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Final Report 
!
Grant:!W81XWH-12-1-0233!!
PI:!Carlo!Piermarocchi!Michigan!State!University!
Title:!Attractor!signaling!models!for!discovery!of!combinatorial!therapies!
Total!period!of!performance:!Aug!15!2012-!Aug!14!2014!
!
!
Introduction!
! Surgery!and!radiation!therapies!are!difficult!to!use!in!the!treatment!of!lung!cancer!because!the!
diagnosis!often!occurs!when!patients!already!have!metastasis.!Drug-based!therapies!are!therefore!the!
best!option,!but!intrinsic!and!acquired!drug!resistance!still!makes!the!5-year!survival!rate!for!this!disease!
less!than!15%.!Over!the!years,!many!specific!mechanisms!associated!with!drug!resistance!in!lung!cancer!
have!been!pinpointed,!but!we!are!still! far! from!understanding!how!to!overcome! it. Combination!drug!
therapy!is!commonly!used!to!enhance!efficacy!and!overcome!drug!resistance!in!cancer,!but!at!present!
the!choice!of!drugs!and!doses! is!based!on!empirical! clinical!experience!alone.! In! this!project!we!have!
used! an! interdisciplinary! approach! based! on! the! mathematics! of! complex! networks! to! identify! drug!
combinations!that!could!be!effective!in!the!therapy!of!lung!cancer.!!
! This! reports! describes! the!methods! used! and! presents! computational! and! experimental! data!
that!we!have!obtained!during!the!period!of!operations.!!
! !
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Publications!!
!
The!results!of!activities!carried!out!in!this!project!have!been!published!in:!
!

1. A! Szedlak,! G! Paternostro,! C! Piermarocchi,! Control' of' asymmetric' Hopfield' networks' and'

application'to'cancer'attractors,'PLoS'ONE!9:e105842!(2014);!copy!attached!in!Appendix.!
!

2. Trish! P! Tran,! Edison! Ong,! Andrew! P! Hodges,! Giovanni! Paternostro,! Carlo! Piermarocchi,!
Prediction'of'kinase'inhibitor'response'using'activity'profiling,'inAvitro'screening,'and'elastic'net'

regression,'BMC'Systems'Biology'8:74'(2014);'copy!attached!in!Appendix.'!
!
! !
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Summary!of!Key!research!accomplishments!
 

• We! have! developed! a! novel! computational! approach! to! simulate! the! signaling! dynamics! in!
gene/transcription!factor!networks!(see!publication!#1).!The!model!allows!for!a!direct!mapping!
of!a!gene!expression!pattern!into!dynamical!attractor!states!and!can!test!different!strategies!to!
disrupt! cancer-specific! attractor! patterns.! We! have! designed! algorithms! to! identify! signaling!
bottlenecks,!which!are! single!nodes!or! strongly! connected! clusters!of!nodes! that!have!a! large!
impact! on! the! signaling.! Bottlenecks! identify! ideal! targets! for! the! rational! design! of! robust!
therapeutic!interventions.!

!
• The!method!of!publication!#1!has!been!applied!to!signaling!in!lung!cancer!cell!lines,!specifically!

on!A549,!H358!cell!lines.!The!method!has!identified!targets!that!are!predicted!to!be!associated!
to!a!selective!and!robust!response!to!therapy.!The!full! list!of!targets! is!given!in!Table!1!below.!!
Some!of!the!genes!identified!are!consistent!with!current!clinical!and!cancer!biology!knowledge:!
TP53!is!frequently!mutated!in!lung!cancer;!mutations!in!PBX1!have!been!detected!in!non-small-
cell! lung! cancer;!MAP3K3! and!MAP3K14! are! in! the!MAPK/ERK! pathway,! which! is! a! target! of!
many!novel! therapeutic! agents;! and! SRC! is! a!well! known!oncogene! and! a! candidate! target! in!
lung! cancer.! The! method,! however,! has! also! discovered! new! targets,! in! particular! kinases!
BMPR1B,!TTN,!LCK!and!RIPK3,!which!could!be!targeted!using!kinase!inhibitors.!

!
• We! have! developed! a! novel! method! of! statistical! analysis! of! in-vitro! testing! of! drug!

combinations! (see! publication! #2).! The!method! integrates! information! contained! in! networks!
representing! the! signaling! of! drugs! to! their! targets! with! experimental! data! from! in' vitro!
screening.!The!method!uses!the!in'vitro!cell!response!to!single!drugs!or!drug!combinations!as!a!
training!set!to!build!linear!and!nonlinear!regression!models!and!predicts!the!response!of!cells!to!
new! drug! combinations.! Besides! predicting! the! effectiveness! of! untested! drugs,! the! method!
identifies!targets!that!are!statistically!associated!to!drug!sensitivity!in!a!given!cell!line.!!

!

• The!method!of!publication!#2!was!applied!to!the!A549! lung!cancer!cell! line,!and!we! identified!
specific!kinases!as!important!targets!in!this!type!of!cancer!(TGFBR2,!EGFR,!PHKG1!and!CDK4).!A!
pathway!enrichment!analysis!of! the!set!of!kinases! identified!by!the!method!showed!that!axon!
guidance,!activation!of!Rac,!and!semaphorin!interactions!pathways!are!associated!to!a!selective!
response!to!therapeutic!intervention!in!this!cell!line.#

 
• Methods!in!publications!#1!and!#2,! in!conjunction!with!other!computational!and!experimental!

techniques!previously!developed!by!the!two!principal!investigators,!have!been!used!to!identify!
drug! combinations!effective! in! selectively! killing!A549!cell! lines!versus!a! fibroblast!normal! cell!
line!(IMR-90)!as!a!toxicity!control.!Combinations!with!the!highest!selectivity!are!given!in!Table!3!
below.!Overall,!combinations!containing!relatively!high!doses!of!a!PDK1/Akt1/Flt3!Dual!Pathway!
Inhibitor!(A15!in!the!Table)!and!a!HSP90!inhibitor!(AAG),!combined!with!relatively!low!doses!of!a!
PDGFR! (I11)!and!a!WNT/BETA!CATENIN/PPAR! inhibitor! (535)!were!associated!with! the!highest!
selective!response!in!A549!adenocarcinoma!cell!lines.!!

 
 
! !
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Body:!Detailed!description!of!the!methods!as!outlined!in!the!Statement!of!Work!(SOW).!
!
1.!TASK1!of!SOW:!Collection!of!data!for!attractor!models.!
! A!lung!cell!interactome!was!constructed!by!combining!TRANSFAC!and!PhosphoPOINT!data!(Subtask!1!
of! Task! 1).! The! lung! network! interactome! we! built! has! ~9,000! nodes! and! ~45,000! edges.! Gene!
expression! data! was! obtained! from! the! Gene! Expression! Omnibus! (GEO)! database! for! A549!
adenocarcinoma,! H358! non-small! lung! cancer,! and! IMR90! fetal! lung! fibroblast! normal! cell! lines.! The!
model!requires!Boolean!gene!expression!states.!We!have!defined!a!cutoff!for!the!normalized!expression!
values,! and! all! genes!with! expression! below! the! cutoff! are! “off”! and! all! above! are! “on”.! Because! the!
signaling! is!based!on!a!model!with!±1!states,!on!states!are! identified!by!the!variable!!!! = +1!and!off!
states!by!!!! = −1,!where!“a”!is!either!normal!(n)!or!cancer!(c).!!
! This! procedure! provided! the! configurations! corresponding! to! dynamical! attractor! states! in! our!
method!(Subtask!2!of!Task!1).!Figure!1!shows!representative!gene!expression!data!and!an!example!of!
how!the!cut-off!method!was!implemented.!!
!

!
!
Figure!1.!Representative!gene!expression!data!used!in!our!method.!Expression!levels!take!continuous!values,!but!
must! be!made! Boolean! for! our!model.! The! expression! level! cutoff! for! normal! lung! cells! (IMR90,! pictured),! for!
example,!use!a!cutoff!(dotted!line)!of!approximately!4.!This!was!chosen!because!the!number!of!on!states!is!of!the!
same!order!as!the!number!of!off!states,!but!more!importantly!the!number!of!on!and!off!states!is!not!very!sensitive!
to! small! changes! in! the! cutoff.! The! same! cutoff! is! used! for! both! normal! and! cancer! cells.! The! continuous!
distribution!of!expression!levels!is!roughly!the!same!for!normal!and!cancer!cells.!
!
! We!have!defined!drug!inhibitor-kinase!links!for!a!library!containing!about!300!kinase!inhibitors!
using!experimental!surveys!of!kinase!inhibitor!targets.!(Subtask!3!of!Task!1)!!
!
2.!TASK!2!of!SOW:!Development!of!attractor!model!based!on!neural!network!Hopfield!model'
! After!making!the!attractor!states!Boolean,!we!encoded!the!states!!!(!) = (!!

!(!),!!!
!(!),…, !!

!(!))!
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in!a!signaling!model!defined!by!the!coupling!matrix!
!
! ! ! ! ! !!" = !!"(!!!!!! + !!!!!!)!,!! ! Eq.!(1)!
!
where!!!" !is!the!adjacency!matrix!of!the!lung!cancer!network!interactome!obtained!in!Task!1,!and!!!is!
the!total!number!of!nodes.!The!model!calculates!the!total!signal!arriving!at!node!!!at!time!!!as!
!
! ! ! ! ! ℎ!(!) = !!"!! !!

!!! ,!
!
where!the!!! ! !is!the!state!of!the!node!!!at!time!!.!The!discrete-time!update!scheme!for!the!dynamical!
evolution!of!the!state!of!the!node!!!,!!! ! ,!is!given!by!
!
! ! ! ! ! !! ! + Δ! = +1!!"!ℎ! ! > 0,!
!
! ! ! ! ! !! ! + Δ! = −1!!"!ℎ! ! < 0,!
!
and!chosen!randomly!from!±1!if!the!field!is!zero.!!
!
! Note!that!we!are!left!with!two!kinds!of!genes:!similarity'nodes,!where!!!! = !!!,!and!differential'
nodes,!where!!!! = −!!!.!We!have! then! calculated! the!Hamming!distance!between! cell! attractors! and!
the!dynamical!state!of!the!network!(Subtask!1!of!Task!2).!!
!
! This!distance!has!been!used!to!identify!the!most!sensitive!single!genes!in!the!network!using!the!
following!algorithm:!
!
1. Begin!with!all!genes!set!in!the!normal/cancer!state.!
2. Force!gene!i=1!away!from!the!initial!state!and!count!the!number!of!genes!that!flip!as!a!result.!
3. Repeat!for!i=2...N,!where!N!is!the!number!of!genes!in!the!system.!
! !
! This! algorithm! is! effective! in! identifying!bottleneck! genes.!Bottlenecks'are! genes!which,!when!
targeted!by!inhibitors,!drive!the!cell!far!away!from!its! initial!state.!We!always!try!to!target!bottlenecks!
with!!!! = +1!and!!!! = −1!so!that!cancer!cells!are!driven!away!from!their!initial!state,!while!the!normal!
cells!are!left!unaltered.!
!
! We!used!both!a!one-attractor!state!(p=1)!and!a!two-attractor!state!(p=2)!signaling!model.!In!the!
one!attractor! (p=1)!model! the!!!" !only!contains!one!term! in!Eq.! (1).!Both!models!behave! like!a!simple!
Ising!magnet,!except! that! the! interactions!are!not! symmetric:! the!expression!of!gene! i!may!affect! the!
expression!of!gene! j,!but! j!does!not!necessarily!affect! i.! This!asymmetry!makes!both! the!p=1! and!p=2!
systems!more!vulnerable! to!external!control.!The!p=2! system!has!one!property! that! the!p=1!does!not!
have,! however:! all! edges! between! similarity! and! differential! genes! are! effectively! removed,! while! all!
edges!connecting!similarity!genes!to!each!other!or!differential!genes!to!each!other!remain.!The!network!
fully! separates! into! two! independent! networks,! the! similarity' network! and! the' differential' network.!
When!looking!for!nodes!to!target!in!the!p=2!case,!then,!all!similarity!nodes!can!be!safely!ignored!and!the!
problem!space!is!significantly!reduced.!Aside!from!the!edge!deletion,!however,!p=1!and!p=2!behave!very!
similarly.!An!example!of!genes!identified!by!this!method!and!their!impact!I!in!terms!of!flipped!genes!in!
the!iteractome,!is!shown!in!Table!1.!
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!
! Part! of! the! software! was! implemented! on! the! high! performance! computer! cluster! facility! at!
MSU!(Subtask!2!of!Task!2).!The!algorithm!however!was!sufficiently!fast!that!parallelization!of!the!code!
was!not!necessary.!
!

!
!
Table!1.!Representative!genes!to!be!targeted!for!a!selective!killing!of!A549!(left)!and!H358!(right)!cell!line!versus!a!
control!IMR90!cell!line.!The!impact!I!of!each!gene!for!the!$p$=1!and!$p$=2!models!were!calculated!and!ranked.!
The!constrained!case!(CON!in!the!table)!refers!to!target!that!are!kinases!and!are!expressed!in!the!cancer!case.!The!
calculation!is!based!on!the!selective!response!of!I!=!IMR-90!(normal),!A!=!A549!(cancer),!and!H358!(cancer).!
!
3.!TASK!3!of!SOW:!First!set!of!experiments!at!the!highIthroughput!screening!facility'

We!have!carried!out!a! first!high-throughput!screening!of! single!drug!and!drug!pair!experiments!
(Subtask! 1! of! Task! 3).! The! original! SOW! only! included! single! drug! response,! but! we! realized! that! a!
screening!with! pairs!would! give! better! selectivity.! 244! kinase! inhibitors! (KIs)! of! the! EMD! drug! library!
were! screened! at! 1000nM! individually! and! the! treatment! lasted! for! 72! hours.! To! quantify! a! selective!
response!of!a!cancer!cell!line!with!respect!to!a!control!normal!cell!line,!we!define!the!selectivity!!!of!a!
single!drug!or!drug!combination!as!

! = !!
!!

!

where!!!! indicates!the!viability!of!normal!cells!(IMR90)!after!treatment,!and!!! ! the!viability!of!cancer!
cells! (A549)! after! treatment.! From! the! screening!of! the! 244!KIs,! the! top!hit!was! PDK1/Akt1/Flt3!Dual!
Pathway! Inhibitor! (CAS! #! 331253-86-2)! as! ranked! by! selectivity.! For! the! secondary! screen! (pair!
combination! of! drugs),!we! used! the! PDK1/Akt1/Flt3! Dual! Pathway! Inhibitor! as! the! starting! point! and!
combined! this! compound!with! the! other! KIs! as! a! drug! pair! combination.! The! dose! of! PDK1/Akt1/Flt3!
Dual! Pathway! Inhibitor! was! studied! to! ensure! proper! dosing! range! and! minimize! toxicity.! We! used!
125nM,!which!maintains!the!normal!cell!line!IMR-90’s!viability!>90%.!For!the!other!243!KIs!we!used!the!
standard!dose!of!1000nM.!Several!pairs! in!the!secondary!screen!showed!very!high!selectivity.!The!top!
hit!from!the!secondary!screen!of!the!library!was!Alsterpaullone!2-cyanoethyl!(CAS!#!852529-97-0)!with!a!
selectivity!of!S=!6.14!!for!the!pair!(see!Figure!2).!

27

I/A I/H
p = 1 p = 2 p = 1 p = 2

Gene I Gene I Gene I Gene I

UNC

HNF1A 29 OR5I1 35 HNF1A 29 HMX1 41
TMEM37 22 TMEM37 25 MAP3K3 18 PBX1 38
OR5I1 20 HNF1A 23 TP53 18 MYB 25
MAP3K14 19 POSTN 21 RUNX1 17 ITGB2 20
MAP3K3 18 RORA 18 RORA 16 TNFRSF10A 18

CON
MAP3K14 19 SRC 15 TTN 16 BMPR1B 18
SRC 14 BMPR1B 7 RIPK3 6 LCK 8

N/D N/F N/L
p = 1 p = 2 p = 1 p = 2 p = 1 p = 2

Gene I Gene I Gene I Gene I Gene I Gene I

UNC

BCL6 12 NFIC 22 BCL6 12 NCOA1 20 RBL2 11 RBL2 22
MEF2A 5 TGIF1 19 MEF2A 5 NFATC3 15 FOXM1 8 ATF2 12
NCOA1 5 BCL6 14 NCOA1 5 BCL6 11 ATF2 7 NFATC3 11
TGIF1 4 FOXJ2 12 TGIF1 4 CEBPD 8 RXRA 5 RXRA 9
NFATC3 4 NFATC3 12 NFATC3 4 RELA 8 NFATC3 4 PATZ1 8

CON
BUB1B 2 CSNK2A2 2 BUB1B 2 WEE1 2 BUB1B 2 PRKCD 2
AAK1 1 AKT1 2 AAK1 1 CSNK2A2 2 AAK1 1 AURKB 2

M/D M/F M/L
p = 1 p = 2 p = 1 p = 2 p = 1 p = 2

Gene I Gene I Gene I Gene I Gene I Gene I

UNC

BCL6 12 FOXJ2 12 BCL6 12 NCOA1 18 RBL2 11 RBL2 16
MEF2A 5 NFIC 12 MEF2A 5 BCL6 13 FOXM1 8 ATF2 10
NCOA1 5 BCL6 11 NCOA1 5 E2F3 9 ATF2 7 ZNF91 8
NFATC3 4 NCOA1 9 NFATC3 4 RUNX1 9 RXRA 5 STAT6 8
SMAD4 4 MEF2A 8 RELA 4 TFE3 7 TGIF1 4 FOXM1 8

CON
AAK1 1 RIPK2 1 AAK1 1 ROCK2 2 AAK1 1 AURKB 2
RIPK2 1 MAST2 1 RIPK2 1 RIPK2 1 SCYL3 1 RIPK2 1

Table 3. Best single genes and their impacts for the p=1 and p=2 models. The
unconstrained (UNC) and constrained (CON) case are shown. The constrained case refer to target that
are kinases and are expressed in the cancer case. I = IMR-90 (normal), A = A549 (cancer), H =
NCI-H358 (cancer), N = Näıve (normal), M = Memory (normal), D = DLBCL (cancer), F = Follicular
lymphoma (cancer), L = EBV-immortalized lymphoblastoma (cancer).

Figure Legends
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!
!
Figure! 2:! Representative! data! from! TASK! 3! in! SOW.! Experimental! results! of! the! top! ten!most! selective! drugs!
(1000nM)!when!paired!with!PDK1/Akt1/Flt3!Dual!Pathway! Inhibitor!at!125nM.!Selectivity! is! the! IMR-90! to!A549!
viability! ratio.! The! 3! digit! codes! identify! the! compounds:! A12:! Alsterpaullone,! 2-Cyanoethyl! (CAS! 852529-97-0);!
D17:! Cdk2/9! Inhibitor! (CAS! 507487-89-0);! K08:! K-252a,! Nocardiopsis! sp.! (CAS! 97161-97-2);! O21:! Staurosporine,!
Streptomyces!sp.!(CAS!62996-74-1);!P15:!WHI-P180,!Hydrochloride!(CAS!211555-08-7);!E13:!Go!6976!(CAS!136194-
77-9);! C09:! Compound! 56! (CAS! 171745-13-4);! A10:! Alsterpaullone! (CAS! 237430-03-4);! O03:! AG! 1478,! Selective!
inhibitor!of!epidermal!growth!factor!receptor!(EGFR)!protein!(CAS!175178-82-2);!N05:!Reversine!(CAS!656820-32-
5).!
!
! We!have!also!carried!out!measurements!on!random!combinations!of!drugs!(Subtask!2!of!Task!
3)! including! compounds! from! the! EMD! library! and! other! drugs.! A! representative! data! set! of! random!
combinations!is!given!in!Table!2.!!
!

K04! A12! A15! E03! I11! 628! AAG! 263! MK2! 662! 535! Type! IMR90/A549!
Selectivity!

0! 2! 3! 0! 4! 0! 0! 1! 0! 0! 0! !R! 3.46!

1! 2! 3! 0! 3! 0! 0! 2! 0! 0! 1! !R! 3.81!

1! 3! 0! 4! 1! 1! 1! 0! 0! 1! 0! !R! 1.71!

2! 0! 4! 4! 1! 1! 0! 1! 2! 0! 0! !R! 3.40!

4! 3! 3! 1! 0! 3! 0! 0! 0! 1! 0! !R! 4.90!

3! 3! 2! 4! 0! 1! 0! 0! 0! 2! 1! !R! 1.17!

3! 2! 2! 1! 1! 3! 0! 1! 0! 0! 0! !R! 3.12!

4! 3! 2! 4! 3! 1! 1! 0! 0! 1! 1! !R! 2.11!

0! 4! 3! 1! 3! 1! 1! 1! 1! 0! 0! !R! 1.82!

1! 3! 4! 0! 2! 1! 0! 1! 0! 2! 0! !R! 7.40!
!
Table!2.!Representative!data!with!measurements!of!selectivity!on!A549!cells!versus!IMR90.!Drugs!were!combined!
at!different!doses!ranked!from!0!to!4.!The!drug!combinations!obtained!in!this!table!were!obtained!randomly.!
!
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4.!TASK!4!of!SOW:!Running!and!analysis!of!simulations!
! We! have! run! simulations! to! predict! the! therapeutic! effectiveness! of! combinations! of! kinase!
inhibitors!according!to!the!attractor!model!(Subtask!1!of!Task!4).!We!have!tested!our!model!against!the!
experimental!results!discussed!in!the!previous!section.!We!used!the!available!kinase!inhibition!profiling!
for!a!drug!library!to!determine!which!kinase!are!shut!off!by!each!drug.!We!applied!the!drugs!to!both!the!
normal! and! cancer! cells! for! both! p=1! and! p=2,! and! compared! the! resulting! viabilities! from! the!
experiment,!!!"#,!to!the!model,!
!

!!"#$%~!!!!
!
where!“m”!is!the!magnetization!of!the!system!along!the!attractor!state!(see!Figure!3).!!
!
! Note!that!the!results!for!p=1'and!p=2!are!roughly!the!same,!and!only!the!p=1! result! is!shown.!
The!black!circles!indicate!the!viability!of!the!normal!cells!for!a!given!drug!combination,!which!is!the!drug!
A15!(a!PDK1/AKT1/FLT3!Inhibitor)!and!the!drug!code!next!to!the!black!circles,!and!the!connected!red!x's!
are!the!cancer!viabilities!for!the!same!drug!combination.!This!shows!only!some!of!the!140!drugs!tested.!
The!most!remarkable!result!is!that!without!any!kind!of!fitting,!~95%!of!the!blue!lines!(including!those!
not!pictured)!have!a!positive!slope,!meaning!that! if! the!experiment!showed!that!the!normal/cancer!
cells!fared!better!than!the!cancer/normal!cells,!our!model!showed!that!as!well.!Currently!we!cannot!
reproduce!the!rank!of!the!effectiveness!of!the!drug!combinations,!but!we!can!quite!accurately!predict!
whether!a!combination!will!have!a!selectivity!greater!than!or!less!than!1.!
!

!
!
Figure!3.! Computational! versus! experimental! viability! for! IMR90!and!A549.!All! drug! codes! shown!are! combined!
with!A15! (a!PDK1/AKT1/FLT3! Inhibitor).! The!experimental! results! are! compared!with! the!p=1!model!predictions!
(p=2! is! similar).! A! positive! slope!means! that! there! is! positive! correlation! between! the! experimental! and!model!
results:!the!experiment!showed!that!normal!cells!treated!with!(A15+O16),! for!example,!fared!better!than!cancer!
cells!treated!with!the!same!drugs,!which!our!model!predicts!as!well.!Note!that!while!only!11!drug!combinations!are!
shown,!140!were!tested,!a!promising!95%!of!which!had!a!positive!slope.!!
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!
! We! have! examined! combinations! that! are! more! effective! using! a! learning! machine! method!
known!as!elastic!net!regression!(Subtask!2!of!Task!4).!The!method!uses!the!in!vitro!lung!cancer!A549!cell!
line!response!of!single!drugs!and!drug!pair!combinations!as!a!training!set!to!build!a!regression!model.!
Besides! predicting! the! effectiveness! of! untested! drugs,! the!method! identifies! sets! of! kinases! that! are!
statistically!associated!to!drug!sensitivity!in!lung!cancer.!!More!specifically,!we!built!a!regression!model!
that!predicts!the!response!of!a!cell!line!to!a!drug!or!drug!combination!!.'The!response!we!predict!is!the!
normal!and!cancer!cell!viability,!from!which!the!selectivity!can!be!derived.!For!this!purpose,!we!define!a!
regression!problem!in!which!we!use!the!residual!activity!of!the!kinase!!!under!the!effect!of!drug!!,!which!
we!indicate!as!!!,!,!as!predictors!of!the!viability.!The!response!can!be!written!as!

! ! ! !! = !! + !!!!,! +⋯+ !!!!,!!.!! ! (2)!

A! fitting!procedure!based!on!a!training!set!of!measurements!produces!the!coefficients!(!!,!!,… ,!!).!
Equation! (2)! can! then!be!used! to!predict! the! viability!of! a!new!drug! that!has!not!been! tested,!but!of!
which!the!profiling!information!is!available.!The!coefficients!!! !provide!a!measure!of!the!sensitivity!of!a!
given!cell! line!due!to!alterations! in! the!activity!of!kinase!!.!The!method!was!applied!to!the!A549! lung!
cancer!cell!line,!and!we!identified!specific!kinases!known!to!have!an!important!role!in!this!type!of!cancer!
(TGFBR2,!EGFR,!PHKG1!and!CDK4).!A!pathway!enrichment!analysis!of!the!set!of!kinases!identified!by!the!
method! showed! that! axon! guidance,! activation! of! Rac,! and! semaphorin! interactions! pathways! are!
associated!to!a!selective!response!to!therapeutic!intervention!in!this!cell!line. 
!
! The! formulation! of! the! problem! in! terms! of! bottlenecks,! as! defined! above! has! allowed! us! to!
derive!some!general!properties!on!the!controllability!of!a!cellular!network!based!on!the!mathematical!
properties!of!network!topology.!In!particular,!in!the!first!publication,!we!have!demonstrated!a!theorem!
with! bounds! on! the! minimum! number! of! nodes! that! guarantee! control! of! bottlenecks! consisting! of!
strongly!connected!components!(Subtask3!of!Task!4).!This! information!could!be! important! in!deciding!
the!number!of!proteins!than!needs!to!be!targeted!for!an!efficient!therapy.!We!have!also!compared!the!
controllability! of! the! lung! cancer! network! with! the! controllability! of! an! algorithmically-assembled!
specific!B!cell!gene!regulatory!network!reconstructed!from!gene!expression!data!(Subtask3!of!Task!4).!In!
contrast!to!the! lung!cancer!network,!which! is!generic!but!experimentally!validated,!the!B!cell!network!
has!a!much!higher!connectivity,!and!is!harder!to!control.!!
!
5.!TASK!5!of!SOW:!Second!set!of!experiments!and!test!of!hypothesis!!
! We!have!carried!out!measurement!of!drug!response!of!cells!under!combinations!involving!up!to!
10!drugs!(Subtask!1).! !We!have! included!drugs!that!were! identified!using!the!KIEN!method!above!and!
we! used! a! dose! optimization!method.! Cell! survival! was! assessed! by! luciferase-based! assay,! ATPliteTM!
(PerkinElmer,!CA,!USA),!which!determines!viable!cell!numbers!by!measuring!the!presence!of!ATP!in!all!
metabolically!active!cells.!For! the!measurement!of!cell! viability,!A549!and! IMR-90!cells!were!plated! in!
384-well! plates.! Subsequently,! the! cells! were! treated! with! the! drugs! and! 72! hours! later,! the! ATPlite!
assay! was! performed! according! to! the!manufacturer’s! protocol,! and! luminescence! was! read! with! an!
Analyst!HT!instrument.!Each!combination!was!measured!in!triplicates.!!
! !
!
!
! Table!3!shows!representative!data!with!results!of!the!measurements.!Some!of!the!combinations!
reduce!the!viability!of!cancer!cells!almost!to!zero,!still!significantly!preserving!the!viability!of!IMR90.!
!
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K04! A12! A15! E03! I11! 628! AAG! 263! MK2! 662! 535! IMR90! Selectivity! A549!

3! 1! 4! 1! 2! 3! 3! 1! 1! 1! 1! 0.6162! 297.7349! 0.0021!

2! 2! 4! 2! 2! 3! 3! 1! 1! 1! 2! 0.7287! 281.8844! 0.0026!

2! 2! 4! 1! 2! 1! 3! 1! 1! 1! 2! 0.7257! 273.3291! 0.0027!

2! 1! 4! 1! 2! 2! 3! 1! 1! 2! 2! 0.6719! 244.5041! 0.0027!

1! 1! 3! 1! 2! 3! 3! 1! 1! 2! 2! 0.5578! 225.7526! 0.0025!

2! 2! 4! 2! 2! 3! 4! 1! 1! 1! 2! 0.7177! 221.7178! 0.0032!

2! 1! 4! 1! 2! 2! 3! 1! 3! 2! 1! 0.5110! 216.8450! 0.0024!

2! 1! 4! 1! 2! 2! 3! 1! 1! 2! 1! 0.5600! 213.5330! 0.0026!

2! 2! 4! 4! 2! 4! 3! 1! 1! 1! 2! 0.5800! 210.7142! 0.0028!

2! 1! 4! 3! 3! 3! 3! 1! 1! 1! 2! 0.5616! 205.5397! 0.0027!
!
Table!3:!Representative!data!with!measurements!of!the!highest!selectivity!on!A549!cells!versus!IMR90.!Drugs!were!
combined!at!different!doses!ranked!from!0!to!4.!Columns!labeled!IMR90!and!A549!indicate!the!viability!of!these!
cell!lines!treated!with!the!combination,!while!selectivity!is!the!ratio!of!the!normal!versus!cancer!viability.!!!
!
! !
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Conclusions!
! In! this! early! concepts! project,! we! have! applied! mathematical! tools! of! networks! theory! and!
nonlinear!dynamics!to!the!problem!of!identifying!drug!combinations!that!could!be!more!effecting!in!the!
treatment!of!lung!cancer.!In!particular,!we!have!developed!software!able!to!calculate!the!effect!of!drug!
combinations! on! the! signaling! of! A549! adenocarcinoma,! H358! non-small! lung! cancer,! and! IMR90!
fibroblast!normal!cell! lines!(Milestone!1).!Two!articles!on!the!computational!and!theoretical!results!on!
controllability!of!cancer!networks!and!identification!of!target!genes!in!lung!cancer!have!been!published!
(Milestone!2).!Experimentally,!we!found!drugs!combinations!with!up!to!10!drugs!that!are!very!effective!
in!killing!A549!cells!versus!the!control!IMR90!cells!in!an!in-vitro!setting!(Milestone!3).!
!!!
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Introduction

The vision behind systems biology is that complex interactions
and emergent properties determine the behavior of biological
systems. Many theoretical tools developed in the framework of
spin glass models are well suited to describe emergent properties,
and their application to large biological networks represents an
approach that goes beyond pinpointing the behavior of a few
genes or metabolites in a pathway. The Hopfield model [1] is a
spin glass model that was introduced to describe neural networks,
and that is solvable using mean field theory [2]. The asymmetric
case, in which the interaction between the spins can be seen as
directed, can also be exacty solved in some limits [3]. The model
belongs to the class of attractor neural networks, in which the spins
evolve towards stored attractor patterns, and it has been used to
model biological processes of high current interest, such as the
reprogramming of pluripotent stem cells [4]. Moreover, it has
been suggested that a biological system in a chronic or therapy-
resistant disease state can be seen as a network that has become
trapped in a pathological Hopfield attractor [5]. A similar class of
models is represented by Random Boolean Networks [6], which
were proposed by Kauffman to describe gene regulation and
expression states in cells [7]. Differences and similarities between

the Kauffman-type and Hopfield-type random networks have
been studied for many years [8–11].

In this paper, we consider an asymmetric Hopfield model built
from real (even if incomplete [12,13]) cellular networks, and we
map the spin attractor states to gene expression data from normal
and cancer cells. We will focus on the question of controling of a
network’s final state (after a transient period) using external local
fields representing therapeutic interventions. To a major extent,
the final determinant of cellular phenotype is the expression and
activity pattern of all proteins within the cell, which is related to
levels of mRNA transcripts. Microarrays measure genome-wide
levels of mRNA expression that therefore can be considered a
rough snapshot of the state of the cell. This state is relatively stable,
reproducible, unique to cell types, and can differentiate cancer
cells from normal cells, as well as differentiate between different
types of cancer [14,15]. In fact, there is evidence that attractors
exist in gene expression states, and that these attractors can be
reached by different trajectories rather than only by a single
transcriptional program [16]. While the dynamical attractors
paradigm has been originally proposed in the context of cellular
developement, the similarity between cellular ontogenesis, i.e. the
developement of different cell types, and oncogenesis, i.e. the
process under which normal cells are transformed into cancer
cells, has been recently emphasized [17]. The main hypothesis of
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this paper is that cancer robustness is rooted in the dynamical
robustness of signaling in an underlying cellular network. If the
cancerous state of rapid, uncontrolled growth is an attractor state
of the system [18], a goal of modeling therapeutic control could be
to design complex therapeutic interventions based on drug
combinations [19] that push the cell out of the cancer attractor
basin [20].

Many authors have discussed the control of biological signaling
networks using complex external perturbations. Calzolari and
coworkers considered the effect of complex external signals on
apoptosis signaling [21]. Agoston and coworkers [22] suggested
that perturbing a complex biological network with partial
inhibition of many targets could be more effective than the
complete inhibition of a single target, and explicitly discussed the
implications for multi-drug therapies [23]. In the traditional
approach to control theory [24], the control of a dynamical system
consists in finding the specific input temporal sequence required to
drive the system to a desired output. This approach has been
discussed in the context of Kauffmann Boolean networks [25] and
their attractor states [26]. Several studies have focused on the
intrinsic global properties of control and hierarchical organization
in biological networks [27,28]. A recent study has focused on the
minimum number of nodes that needs to be addressed to achieve
the complete control of a network [29]. This study used a linear
control framework, a matching algorithm [30] to find the
minimum number of controllers, and a replica method to provide
an analytic formulation consistent with the numerical study.
Finally, Cornelius et al. [31] discussed how nonlinearity in network
signaling allows reprogrammig a system to a desired attractor state
even in the presence of contraints in the nodes that can be
accessed by external control. This novel concept was explicitly
applied to a T-cell survival signaling network to identify potential
drug targets in T-LGL leukemia. The approach in the present
paper is based on nonlinear signaling rules and takes advantage of
some useful properties of the Hopfield formulation. In particular,
by considering two attractor states we will show that the network
separates into two types of domains which do not interact with
each other. Moreover, the Hopfield framework allows for a direct
mapping of a gene expression pattern into an attractor state of the
signaling dynamics, facilitating the integration of genomic data in
the modeling.

The paper is structured as follows. In Mathematical Model we
summarize the model and review some of its key properties.
Control Strategies describes general strategies aiming at selectively
disrupting the signaling only in cells that are near a cancer
attractor state. The strategies we have investigated use the concept
of bottlenecks, which identify single nodes or strongly connected
clusters of nodes that have a large impact on the signaling. In this
section we also provide a theorem with bounds on the minimum
number of nodes that guarantee control of a bottleneck consisting
of a strongly connected component. This theorem is useful for
practical applications since it helps to establish whether an
exhaustive search for such minimal set of nodes is practical. In
Cancer Signaling we apply the methods from Control Strategies to
lung and B cell cancers. We use two different networks for this
analysis. The first is an experimentally validated and non-specific
network (that is, the observed interactions are compiled from
many experiments conducted on heterogeneous cell types)
obtained from a kinase interactome and phospho-protein database
[32] combined with a database of interactions between transcrip-
tion factors and their target genes [33]. The second network is cell-

specific and was obtained using network reconstruction algorithms
and transcriptional and post-translational data from mature
human B cells [34]. The algorithmically reconstructed network
is significantly more dense than the experimental one, and the
same control strategies produce different results in the two cases.
Finally, we close with Conclusions.

Methods

Mathematical Model
We define the adjacency matrix of a network G composed of N

nodes as

Aij~
1 if j?i

0 otherwise

!
, ð1Þ

where j?i denotes a directed edge from node j to node i. The set
of nodes in the network G is indicated by V (G) and the set of
directed edges is indicated by E(G)~ (j,i) : j?if g. (See Table 1
for a list of mathematical symbols used in the text.) The spin of
node i at time t is si(t)~+1, and indicates an expresssed (z1) or
not expressed ({1) gene. We encode an arbitrary attractor state
~jj~(j1,j2,:::,jN ) with ji~+1 by defining the coupling matrix [1]

Jij~Aijjijj : ð2Þ

The total field at node i is then hi~hext
i z

P
j Jijsj , where hext

i is

the external field applied to node i, which will be discussed below.
The discrete-time update scheme is defined as

si(tzDt)~
z1 with prob: (1zexp½{hi(t)=T $){1

{1 with prob: (1zexp½zhi(t)=T $){1

(

ð3Þ

where T§0 is an effective temperature. For the remainder of the
paper, we consider the case of T~0 so that si~sign(hi), and the
spin is chosen randomly from +1 if hi~0. For convenience, we
take t[ and Dt~1. Nodes can be updated synchronously, and
synchronous updating can lead to limit cycles [9]. Nodes can also
be updated separately and in random order (anynchronous
updating), which does not result in limit cycles. All results
presented in this paper use the synchronous update scheme.

Source nodes (nodes with zero indegree) are fixed to their initial
states by a small external field so that sq(t)~sq(0) for all q[Q,

where Q is the set of source nodes. However, the source nodes flip
if directly targeted by an external field. Biologically, genes at the
‘‘top’’ of a network are assumed to be controlled by elements
outside of the network.

In application, two attractors are needed. Define these states as
~jjn and ~jjc, the normal state and cancer state, respectively. The
magnetization along attractor state a is

ma(t)~
1

N

XN

i~1

si(t)j
a
i : ð4Þ

Note that if ma(t)~+1, ~ss(t)~+~jja. We also define the steady
state magnetization along state a as
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ma
?~ lim

t??

1

t

Xt

t~1

ma(t): ð5Þ

There are two ways to model normal and cancer cells. One way
is to simply define a different coupling matrix for each attractor
state a,

Ja
ij~Aijj

a
i ja

j : ð6Þ

Alternatively, both attractor states can be encoded in the same
coupling matrix,

Jij~Aij(j
n
i jn

j zjc
i jc

j ): ð7Þ

Systems using Eqs. 6 and 7 will be referred to as the one
attractor state (p~1) and two attractor state (p~2) systems,
respectively. Eqs. 6 and 7 are particular cases of the general
Hopfield form [1]

Jij~Aij

Xp

k~1

jk
i jk

j , ð8Þ

where p is the number of attractor states, often taken to be large.
An interesting property emerges when p~2, however. Consider a
simple network composed of two nodes, with only one edge 1?2

with attractor states~jjn and~jjc, and T~0. The only nonzero entry
of the matrix Jij is

J21~jn
2jn

1zjc
2jc

1: ð9Þ

Note that if ~jjn~+~jjc, J21~2jn
2jn

1. In either case, by Eq. 3 we
have

s2(tz1)~
zjn

2 if s1(t)~zjn
1

{jn
2 if s1(t)~{jn

1

!
, ð10Þ

that is, the spin of node 2 at a given time step will be driven to
match the attractor state of node 1 at the previous time step.
However, if jn

1~+jc
1 and jn

2~+jc
2, J21~0. This gives

s2(t)~
z1 with probability 1=2

{1 with probability 1=2

(

ð11Þ

In this case, node 2 receives no input from node 1. Nodes 1 and 2
have become effectively disconnected.

This motivates new designations for node types. We define
similarity nodes as nodes with jn

i ~jc
i , and differential nodes

as nodes with jn
i ~{jc

i . We also define the set of similarity

nodes S~ i : jn
i ~jc

i

" #
and the set of differential nodes D~ i : jn

i

"

~{jc
i g. Connections between two similarity nodes or two

differential nodes remain in the network, whereas connections
that link nodes of different types transmit no signals. The effective
deletion of edges between nodes means that the original network
fully separates into two subnetworks: one composed entirely of
similarity nodes (the similarity network) and another composed
entirely of differential nodes (the differential network), each of
which can be composed of one or more separate weakly connected
components (see Fig. 1). With this separation, new source nodes
(effective sources) can be exposed in both the similarity and
differential networks. For the remainder of this article, Q is the set
of both source and effective source nodes in a given network.

Control Strategies
The strategies presented below focus on selecting the best single

nodes or small clusters of nodes to control, ranked by how much
they individually change ma

?. In application, however, controlling
many nodes is necessary to achieve a sufficiently changed ma

?.

Table 1. Reference table for symbols.

Symbol Explanation

G Set of nodes and directed edges (network)

N Number of nodes

Aij Adjacency matrix

V (G) Set of nodes in G

E(G) Set of edges in G

degz={(i) Outdegree/indegree of node i

si Spin of node i, ~+1

ja
ath attractor

jn=c Normal/cancer attractor

Jij Coupling matrix

hi Total field at node i

hext
i External field applied to node i

T Temperature

Q Set of source and effective source nodes

ma(t) Magnetization along attractor a at time t

ma
? Steady-state magnetization along attractor a

p Number of attractors in coupling matrix

S Set of similarity nodes

D Set of differential nodes

L(B) Control set of bottleneck B

I(B) Impact of bottleneck B

C Cycle cluster

B Size k bottleneck, where k~DBD

Z(B,G) Set of critical nodes for bottleneck B in network G

ncrit(B,G) Critical number of nodes in bottleneck B in network G

R(C,G) Set of externally influenced nodes

W (C,G) Set of intruder connections

Zred(C,G) Reduced set of critical nodes

m Minimum indegree of all nodes in a cycle cluster

ecrit(B) Critical efficiency of bottleneck B

eopt(B) Optimal efficiency of bottleneck B

This table lists all important symbols introduced in the article with a brief
explanation of its purpose.
doi:10.1371/journal.pone.0105842.t001
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The effects of controlling a set of nodes can be more than the sum
of the effects of controlling individual nodes, and predicting the
truly optimal set of nodes to target is computationally difficult.
Here, we discuss heuristic strategies for controlling large networks
where the combinatorial approach is impractical.

For both p~1 and p~2, simulating a cancer cell means that

~ss(0)~z~jjc, and likewise for normal cells. Although the normal
and cancer states are mathematically interchangeable, biologically
we seek to decrease m c

? as much as possible while leaving
m n

?&z1. By ‘‘network control’’ we thus mean driving the system

away from its initial state of ~ss(0)~~jjc with ~hhext. Controlling
individual nodes is achieved by applying a strong field (stronger
than the magnitude of the field due to the node’s upstream
neighbors) to a set of targeted nodes T so that

hext
t ~

lim(u??) {ujc
t t[T

0 else

(

: ð12Þ

This ensures that the drug field can always overcome the field
from neighboring nodes.

In application, similarity nodes are never deliberately directly
targeted, since changing their state would adversely affect both
normal and cancer cells. Roughly 70% of the nodes in the
networks surveyed are similarity nodes, so the search space is
reduced. For p~2, the effective edge deletion means that only the
differential network in cancer cells needs to be simulated to

determine the effectiveness of~hhext. For p~1, however, there may
be some similarity nodes that receive signals from upstream

differential nodes. In this case, the full effect of ~hhext can be
determined only by simulating all differential nodes as well as any
similarity nodes downstream of differential nodes. All following
discussion assumes that all nodes examined are differential, and
therefore targetable, for both p~1 and p~2. The existence of
similarity nodes for p~1 only limits the set of targetable nodes.

Directed acyclic networks. Full control of a directed acyclic
network is achieved by forcing sq~{jc

q for all q[Q. This

guarantees mc
?~{1. Suppose that nodes q[Q in an acyclic

network have always been fixed away from the cancer state, that is,
sq(t?{?)~{jc

q. For any node i to have si(t)~jn
i , it is

sufficient to have either i[Q or sj(t{1)~jn
j for all j?i, i[=Q.

Because there are no cycles present, all upstream paths of sufficent
length terminate at a source. Because the spin of all nodes q[Q
point away from the cancer attractor state, all nodes downstream
must also point away from the cancer attractor state. Thus, for
acyclic networks, forcing sq~{jc

q guarantees mc
?~{1. The

complications that arise from cycles are discussed in the next
subsubsection. However, controlling nodes in Q may not be the
most efficient way to push the system away from the cancer basin
of attraction and, depending on the control limitations, it may not
be possible. If minimizing the number of controllers is required,
searching for the most important bottlenecks is a better strategy.

Consider a directed network G and an initially identical copy,
G0~G: If removing node i (and all connections to and from i)
from G0 decreases the indegree of at least one node j[V (G0), j=i,
to less than half of its indegree in network G, fig is a size 1
bottleneck. The bottleneck control set of bottleneck fig, L(i), is
defined algorithmically as follows: (1) Begin a set L(i) with the
current bottleneck i so that L~fig; (2) Remove bottleneck fig
from network G0; (3) Append L(i) with all nodes j with current
indegree that is less than half of that from the original network G;
(4) Remove all nodes j from the network G0. If additional nodes in
G0 have their indegree reduced to below half of their indegree in
G, go to step 3. Otherwise, stop. The impact of the bottleneck i, I(i),
is defined as

I(i)~DL(i)D, ð13Þ

where DX D is the cardinality of the set X : The impact of a
bottleneck is the minimum number of nodes that are guaranteed
to switch away from the cancer state when the bottleneck is forced
away from the cancer state.

Figure 1. Network segregation for two attractor states (p~2). Every edge that connects a similarity node to a differential node or a differential
node to a similarity node transmits no signal. This means that the signaling in the right network shown above is identical to that of the left network.
Because the goal is to leave normal cells unaltered while damaging cancer cells as much as possible, all similarity nodes can be safely ignored, and
searches and simulations only need to be done on the differential subnetwork.
doi:10.1371/journal.pone.0105842.g001
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The impact is used to rank the size 1 bottlenecks by importance,
with the most important as those with the largest impact. In
application, when searching for nodes to control, any size 1
bottleneck fig that appears in the bottleneck control set of a
different size 1 bottleneck fjg can be ignored, since fixing j to the
normal state fixes i to the normal state as well. Note that the
definition given above in terms of G and G0 avoids miscounting in
the impact of a bottleneck.

The network in Fig. 2, for example, has three sources (nodes 1,
2 and 3), but one important bottleneck (node 6). If full damage, i.e.
mc

?~{1, is required, then control of all source nodes is
necessary. If minimizing the number of directly targeted nodes is
important and mc

?w{1 can be tolerated, then control of the
bottleneck node 6 is a better choice.

Directed cycle-rich networks. Not all networks can be fully
controlled at T~0 by controlling the source nodes, however. If
there is a cycle present, paths of infinite length exist and the final
state of the system may depend on the initial state, causing parts of
the network to be hysteretic. Controlling only sources in a general
directed network thus does not guarantee mc

?~{1 unless the
system begins with si~{jc

i .

Define a cycle cluster, C, as a strongly connected subnetwork of
a network G: The network in Fig. 3, for example, has one cycle
cluster with nodes V (C)~ 4,5,6,7f g. If the network begins with

~ss(0)~~jjc, forcing both source nodes away from the cancer state
does nothing to the nodes downsteam of node 3 (see Fig. 4). This is
because the indegree deg{(4)~4, and a majority of the nodes
connecting to node 4 are in the cancer attractor state. At T~0,
cycle clusters with high connectivity tend to block incoming signals
from outside of the cluster, resulting in an insurmountable
activation barrier.

The most effective single node to control in this network is any
one of nodes 4, 6 or 7. Forcing any of these away from the cancer
attractor state will eventually cause the entire cycle cluster to flip
away from the cancer state, and all nodes downstream will flip as
well, as shown in Fig. 4. The cycle cluster here acts as a sort of
large, hysteretic bottleneck. We now generalize the concept of
bottlenecks.

Define a size k bottleneck in a network G to be a cycle cluster B
with DV(B)D~k which, when removed from G, reduces the
indegree of at least one node j[V (G), j[=V Bð Þ to less than half of
its original indegree. Other than now using the set of nodes V (B)
rather than a single node set, the above algorithm for finding the
bottleneck control set remains unchanged. In Fig. 3, for instance,
V (B)~ 4,5,6,7f g, k~4, L(B)~ 4,5,6,7,8,9,10f g, and I(B)~7.
With this more general definition, we note that controlling any size
k bottleneck B guarantees control of all size 1 bottlenecks B0 in the
control set of B for all k§1.

For any bottleneck B of size k§1 in a network G, define the set
of critical nodes, Z(B,G), as the set of nodes Z(B,G)(V (B) of
minimum cardinality that, when controlled, guarantees full control
of all nodes i[V (B) after a transient period. Also define the critical
number of nodes as ncrit(B,G)~DZ(B,G)D. Thus, for the network in
Fig. 3, Z(B,G)~f4g, f6g, or f7g, and ncrit(B,G)~1.

In general, however, more than one node in a cycle cluster may
need to be targeted to control the entire cycle cluster. Fig. 5 shows
a cycle cluster (composed of nodes 2–10) that cannot be controlled
by targeting any single node. The precise value of ncrit for a given
cycle cluster C depends on its topology as well as the edges
connecting nodes from outside of C to the nodes inside of C, and
finding Z(C,G) can be difficult. We present a theorem that puts
bounds on ncrit to help determine whether a search for Z(C,G) is
practical.

Theorem: Suppose a network G contains a cycle cluster C:
Define the set of externally influenced nodes

R(C,G)~fi[V (C) : j[V (G \C),(j,i)[E(G)g, ð14Þ

the set of intruder connections

W (C,G)~f(j,i)[E(G) : i[V (C),j[V (G \C)g, ð15Þ

and the reduced set of critical nodes

Zred(C,G)~Z(C,G \W ): ð16Þ

If N~DV (C)D and

m: min
i[V (C)

deg{(i), ð17Þ

where deg{(i) is computed ignoring intruder connections, then

qm

2
rƒncrit(C,G)ƒf, ð18Þ

where

f:min qN

2
rzDR(C,G)\Zred(C,G)D,N

! "
: ð19Þ

Proof: First, prove the lower limit of Eq. 18. Let C be a cycle
cluster in a network G with R(C,G)~f1g. (A cycle cluster in a
network with DR(C,G)Dw0 will have the same or higher activation
barrier for any node in the cluster than the same cycle cluster in a
network with R~f1g. Since we are examining the lower limit of
Eq. 18, we consider the case with the lowest activation barrier.

Figure 2. A directed acyclic network. Controlling all three source
nodes (nodes 1, 2 and 3) guarantees full control of the network, but are
ineffective when targeted individually. The best single node to control
in this network is node 6 because it directly controls all downstream
nodes.
doi:10.1371/journal.pone.0105842.g002
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Any externally influenced nodes cause ncrit to either increase or
remain the same.) For any node i to be able to flip away from the
cancer state (although not necessarily remain there), we must have
that hi~{ajc

i for a§0, meaning that at least half of the nodes

upstream of i must point away from the cancer state. The node i
requiring the smallest number of upstream nodes to be in the
normal state is the node that satisfies deg{(i)~m: Controlling less
than m=2 nodes will leave all uncontrolled nodes with a field in the
cancer direction, and no more flips will occur. Thus,

ncrit§qm

2
r: ð20Þ

For the upper limit of Eq. 18, consider a complete clique on N
nodes, C~KN (that is, Aij~1 for all i, j[V (KN ), including self

loops) in a network G: First, let there be no connections to any
nodes in C from outside of C so that R(C,G)~f1g. For odd N,
forcing (Nz1)=2 nodes away from the cancer state will result in
the field

X

j

Jijsj~
N{1

2
{

Nz1

2

! "
jc

i ~{jc
i ð21Þ

for all nodes i: After one time step, all nodes will flip away from the
cancer state. For even N, forcing N=2 nodes away from the cancer
state will result in the field

X

j

Jijsj~
N

2
{

N

2

! "
jc

i ~0 ð22Þ

for all nodes i: At the next time step, the unfixed nodes will pick
randomly between the normal and cancer state. If at least one of
these nodes makes the transition away from the cancer state, the

field at all other nodes will point away from the cancer direction.
The system will then require one more time step to completely
settle to si~{jc

i :. Thus, we have that for C~KN in a network G
with R(C,G)~f1g,

ncrit(KN ,G)~qN

2
r: ð23Þ

KN with si(0)~jc
i gives the largest activation barrier for any cycle

cluster on N nodes with R(C,G)~f1g to switch away from the
cancer attractor state. A general cycle cluster C with any topology
on N nodes with R(C,G)~f1g in a network G will have
deg{(i)ƒN for all nodes i, and so we have the upper bound

ncrit(C,G)ƒqN

2
r, ð24Þ

thus proving Eq. 18 for the special case of R(C,G)~f1g.
Now consider a cycle cluster C on N nodes in a network G with

DR(C,G)D§0. Suppose all nodes in Zred(C,G) are fixed away
from the cancer state. By Eq. 24, DZred C,Gð ÞDƒqN=2r: For any
node i[(R(C,G)\Zred(C,G)), si(t??)~{jc

i is guaranteed
because it has already been directly controlled. Any node
i[(R(C,G)\Zred(C,G)) has some incoming connections from
nodes j[=V (C), and these connections could increase the activation
barrier enough such that fixing Zred(C,G) is not enough to
guarantee si(t??)~{jc

i . To ensure that any node l[V (C)
points away from the cancer state, it is sufficient to fix all nodes
i[(R(C,G)\Zred(C,G)) as well as Zred(C,G) away from the cancer
state. This increases ncrit by at most DR(C,G)\Zred(C,G)D, leaving

ncrit(C,G)ƒqN

2
rzDR(C,G)\Zred(C,G)D: ð25Þ

ncrit can never exceed N, however, because directly controlling
every node results in controlling C: We can thus say that

ncrit(C,G)ƒmin qN

2
rzDR(C,G)\Zred(C,G)D,N

! "
: ð26Þ

Finally, combining the upper limit in Eq. 26 with the lower limit
from Eq. 20 gives Eq. 18. &

There can be more than one Zred for a given cycle cluster. Note
that the tightest constraints on ncrit in Eq. 18 come from using the
Zred with the largest overlap with R. If finding Zred is too difficult,
an overestimate for the upper limit of ncrit can be made by
assuming that R\Zred~f1g so that

qm

2
rƒncrit(C,G)ƒ min qN

2
rzDR(C,G)D, N

! "
: ð27Þ

The cycle cluster in Fig. 5 has N~9, R~f2,9g, m~1, and one
of the reduced sets of critical nodes is Zred~f9,10g, so
1ƒncritƒ6: It can be shown through an exhaustive search that
for this network ncrit~2, and the set of critical nodes is Z~f9,10g
(see Fig. 6). Here, Z~Zred, although this is not always the case.
Because the cycle cluster has 9 nodes and 1ƒncritƒ6, at most
P6

n~1
9
n

! "
~465 simulations are needed to find at least one

solution for Z(C,G). However, the maximum number of

Figure 3. A network in which nodes 4, 5, 6 and 7 compose a
single cycle cluster. The high connectivity of node 4 prevents any
changes made to the spin of nodes 1–3 from propagating downstream.
The only way to indirectly control nodes 8–10 is to target nodes inside
of the cycle cluster. Targeting node 4, 6 or 7 will cause the entire cycle
cluster to flip away from its initial state, guaranteeing control of nodes
4–10 (see Fig. 4).
doi:10.1371/journal.pone.0105842.g003
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simulations required to find Z(C,G) increases exponentially and
for larger networks the problem quickly becomes intractable.

One heuristic strategy for controlling cycle clusters is to look for
size k0vDV (C)D bottlenecks inside of C: Bottlenecks of size k&1
and average indegree Sdeg{(B)T%k can contain high impact size
k0 bottlenecks, where k0vk. Size k§1 bottlenecks need to be
compared to find the best set of nodes to target to reduce mc

?.
Simply comparing the impact is insufficent because a cycle cluster
with a large impact could also have a large ncrit, requiring much
more effort than its impact merits. Define the critical efficiency of a
bottleneck B as

ecrit(B)~
I(B)

ncrit(B,G)
: ð28Þ

If the critical efficiency of a cycle cluster is much smaller than the
impacts of size 1 bottlenecks from outside of the cycle cluster, the
the cycle cluster can be safely ignored.

For some cycle clusters, however, not all of the nodes need to be
controlled in order for a large portion of the nodes in the cycle
cluster’s control set to flip. Define the optimal efficiency of a
bottleneck B as

eopt(B)~ max
n~1,2,...

I
Sn

i~1 Bi

! "

n

# $
ð29Þ

where Bi(V(B) are size 1 bottlenecks and I(Bi)wI(Biz1) for all
i: Note that for any size 1 bottleneck B, eopt(B)~ecrit(B)~I(B):
This quantity thus allows bottlenecks with very different properties
(I(B), ncrit(B,G), or DV (B)D) to be ranked against each other.

All strategies presented above are designed to select the best
individual or small group of nodes to target. Significant changes in
the biological networks’ magnetization require targeting many
nodes, however. Brute force searches on the effect of larger
combinations of nodes are typically impossible because the
required number of simulations scales exponentially with the
number of nodes. A crude Monte Carlo search is also numerically
expensive, since it is difficult to sample an appreciable portion of
the available space. One alternative is to take advantage of the
bottlenecks that can be easily found, and rank all size k§1
bottlenecks Bi in an ordered list U such that

U~(B1,B2,B3, . . . ) ð30Þ

where

Figure 4. Cancer magnetization from targeting various nodes in the network shown in Fig. 3, averaged over 10,000 runs. The
averaging removes fluctuations due to the random flipping of nodes with hi~0: Targeting node 7 results in the quickest stabilization, but targeting
any one of nodes 4, 6 or 7 results in the same final magnetization.
doi:10.1371/journal.pone.0105842.g004

Hopfield Networks and Cancer Attractors

PLOS ONE | www.plosone.org 7 August 2014 | Volume 9 | Issue 8 | e105842



eopt Bið Þ§eopt Biz1ð Þ, Bi5=L Bj

! "
ð31Þ

for all Bi,Bj[U and fix the bottlenecks in the list in order. This is
called the efficiency-ranked strategy. If all size kw1 bottlenecks are
ignored, it is called the pure efficiency-ranked strategy, and if size

kw1 bottlenecks are included it is called the mixed efficiency-
ranked strategy.

An effective polynomial-time algorithm for finding the top z
nodes to fix, which we call the best+1 strategy (equivalent to a
greedy algorithm), works as follows: (1) Begin with a seed set of
nodes to fix, F ; (2) Test the effect of fixing F|i for all allowed
nodes i[=F ; (3) F/F|ibest, where ibest is the best node from all i
sampled; (4) If DF Dvz, go to step (2). Otherwise, stop. The seed set
of nodes could be the single highest impact size 1 bottleneck in the
network, or it could be the best set of n nodes (where nvz) found
from a brute force search.

Cancer Signaling

In application to biological systems, we assume that the
magnetization of cell type a is related to the viability of cell type
a, that is, the fraction of cells of type a that survives a drug
treatment. It is reasonable to assume that the viability of cell type
a, va(ma

?), is a monotonically increasing function of ma
?. Because

the exact relationship is not known, we analyze the effect of
external perturbations in terms of the final magnetizations.

We need to use as few controllers as possible to sufficiently
reduce mc

? while leaving mn
?&z1. In practical applications,

however, one is limited in the set of druggable targets. All classes of
drugs are constrained to act only on a specific set of biological
components. For example, one class of drugs that is currently
under intense research is protein kinase inhibitors [35]. In this case
one has two constraints: the only nodes that can be targeted are
those that correspond to kinases, and they can only be inhibited,
i.e. turned off. We will use the example of kinase inhibitors to show
how control is affected by such types of constraints. In the real
systems studied, many differential nodes have only similarity nodes
upstream and downstream of them, while the remaining
differential nodes form one large cluster. This is not important
for p~1, but the effective edge deletion for p~2 results in many

Figure 5. A network with a cycle cluster C, composed of nodes
2–10, that cannot be controlled at T~0 by controlling any
single node. Here, the set of externally influenced nodes is
R(C,G)~f2,9g, the set of intruder connections is W (C,G)~f(1,2),
(1,9)g, the reduced set of critical nodes is Zred(C,G)~f9,10g, the
minimum indegree is m~1 and the number of nodes in the cycle cluster
is N~9: By Eq. 18, this gives the bounds of the critical number of nodes
to be 1ƒncritƒ6.
doi:10.1371/journal.pone.0105842.g005

Figure 6. Magnetization for network from Fig. 5, averaged over 10,000 runs. There is no single node to target that will control the cycle
cluster, but fixing nodes 9 and 10 results in full control of the cycle cluster, leaving only node 1 in the cancer state. This means Z(C,G)~f9,10g and
ncrit~2.
doi:10.1371/journal.pone.0105842.g006
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islets, which are nodes i with Aij~Aji~0 for all i=j (self-loops

allowed). Controlling islets requires targeting each islet individu-
ally. For p~2, we concentrate on controlling only the largest
weakly connected differential subnetwork. All final magnetizations
are normalized by the total number of nodes in the full network,
even if the simulations are only conducted on small portion of the
network.

The data files for all networks and attractors analyzed below can
be found in Supporting Information.

Lung Cell Network
The network used to simulate lung cells was built by combining

the kinase interactome from PhosphoPOINT [32] with the
transcription factor interactome from TRANSFAC [33]. Both of
these are general networks that were constructed by compiling
many observed pairwise interactions between components, mean-
ing that if j?i, at least one of the proteins encoded by gene j has
been directly observed interacting with gene i in experiments. This
bottom-up approach means that some edges may be missing, but
those present are reliable. Because of this, the network is sparse
(*0:057% complete, see Table 2), resulting in the formation of
many islets for p~2. Note also that this network presents a clear
hierarchical structure, characteristic of biological networks
[36,37], with many ‘‘sink’’ nodes [38] that are targets of

Table 2. General properties of the full networks.

Properties Lung B cell

Nodes 9073 4364

Edges 45635 55144

Sources 129 8

Sinks 8443 1418

Av. outdegree 5.03 12.64

Max outdegree 240 2372

Max indegree 68 196

Self-loops 238 0

Undirected edges 350 23386

Diameter 11 11

Max cycle cluster 401 2886

Av. clustering coeff. [73] 0.0544 0.2315

The network used for the analysis of lung cancer is a generic one obtained
combining the data sets in Refs. [32] and [33]. The B cell network is a curated
version of the B cell interactome obtained in Ref. [34] using a network
reconstruction method and gene expression data from B cells.
doi:10.1371/journal.pone.0105842.t002

Figure 7. Final cancer magnetizations for an unconstrained search on the lung cell network using p = 1. The efficiency-ranked strategy
outperforms the relatively expensive Monte Carlo strategy. The best+1 strategy works best, although it requires the largest computational time. Note
that the mixed efficiency-ranked curve is not shown because it is identical to the pure efficiency-ranked curve. Key for magnetization curves: MC =
Monte Carlo, B+1 = best+1, ERP = pure efficiency-ranked, ERM = mixed efficiency-ranked, EX = exhausive search.
doi:10.1371/journal.pone.0105842.g007
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transcription factors and a relatively large cycle cluster originating
from the kinase interactome.

It is important to note that this is a non-specific network,
whereas real gene regulatory networks can experience a sort of
‘‘rewiring’’ for a single cell type under various internal conditions
[39]. In this analysis, we assume that the difference in topology
between a normal and a cancer cell’s regulatory network is
negligible. The methods described here can be applied to more
specialized networks for specific cell types and cancer types as
these networks become more widely avaliable.

In our signaling model, the IMR-90 cell line [40,41] was used
for the normal attractor state, and the two cancer attractor states
examined were from the A549 (adenocarcinoma) [42–46] and
NCI-H358 (bronchioalveolar carcinoma) [42,43] cell lines. Gene
expression measurements from all referenced studies for a given
cell line were averaged together to create a single attractor. The
resulting magnetization curves for A549 and NCI-H358 are very
similar, so the following analysis addresses only A549. The full
network contains 9073 nodes, but only 1175 of them are
differential nodes in the IMR-90/A549 model. In the uncon-
strained p~1 case, all 1175 differential nodes are candidates for
targeting. Exhaustively searching for the best pair of nodes to
control requires investigating 689725 combinations simulated on
the full network of 9073 nodes. However, 1094 of the 1175 nodes
are sinks (i.e. nodes i with outdegree degz(i)~0, ignoring self

loops) and therefore have I(i)~eopt(i)~1, which can be safely

ignored. The search space is thus reduced to 81 nodes, and finding
even the best triplet of nodes exhaustively is possible. Including
constraints, only 31 nodes are differential kinases with jc

i ~z1.
This reduces the search space at the cost of increasing the
minimum achievable mc

?.

There is one important cycle cluster in the full network, and it is
composed of 401 nodes. This cycle cluster has an impact of 7948
for p~1, giving a critical efficiency of at least *19:8, and
1ƒncritƒ401 by Eq. 27. The optimal efficiency for this cycle
cluster is eopt~29, but this is achieved for fixing the first bottleneck

in the cluster. Additionally, this node is the highest impact size 1
bottleneck in the full network, and so the mixed efficiency-ranked
results are identical to the pure efficiency-ranked results for the
unconstrained p~1 lung network. The mixed efficiency-ranked
strategy was thus ignored in this case.

Fig. 7 shows the results for the unconstrained p~1 model of the
IMR-90/A549 lung cell network. (All simulations were performed
using MATLAB on a desktop computer. Running the simulations
to make all curves shown below required approximately 12 hours.)
The unconstrained p~1 system has the largest search space, so the
Monte Carlo strategy performs poorly. The best+1 strategy is the
most effective strategy for controlling this network. The seed set of
nodes used here was simply the size 1 bottleneck with the largest
impact. Note that best+1 works better than effeciency-ranked.

Figure 8. Final cancer magnetizations for an unconstrained search on the lung cell network using p = 2. As in the p = 1 case, the
efficiency-ranked strategy outperforms the expensive Monte Carlo search. The plateaus in the efficiency-ranked strategy when fixing 9–10, 12–15, 20–
21, etc. nodes are a result of targeting bottlenecks that are already indirectly controlled.
doi:10.1371/journal.pone.0105842.g008
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This is because best+1 includes the synergistic effects of fixing
multiple nodes, while efficiency-ranked assumes that there is no
overlap between the set of nodes downstream from multiple
bottlenecks. Importantly, however, the efficiency-ranked method
works nearly as well as best+1 and much better than Monte Carlo,
both of which are more computationally expensive than the
efficiency-ranked strategy.

Fig. 8 shows the results for the unconstrained p~2 model of the
IMR-90/A549 lung cell network. The search space for p~2 is
much smaller than that for p~1. The largest weakly connected
differential subnetwork contains only 506 nodes (see Table 3), and
the remaining differential nodes are islets or are in subnetworks
composed of two nodes and are therefore unnecessary to consider.
Of these 506 nodes, 450 are sinks. Fig. 9 shows the largest weakly
connected component of the differential subnetwork, and the top
five bottlenecks in the unconstrained case are shown in red. If
limiting the search to differential kinases with jc

i ~z1 and
ignoring all sinks, p~2 has 19 possible targets. There is only one
cycle cluster in the largest differential subnetwork, containing 6
nodes. Like the p~1 case, the optimal efficiency occurs when
targeting the first node, which is the highest impact size 1
bottleneck. Because the mixed efficiency-ranked strategy gives the
same results as the pure efficiency-ranked strategy, only the pure
strategy was examined. The Monte Carlo strategy fares better in
the unconstrained p~2 case because the search space is smaller.
Additionally, the efficiency-ranked strategy does worse against
the best+1 strategy for p~2 than it did for p~1. This is because
the effective edge deletion decreases the average indegree of the
network and makes nodes easier to control indirectly. When many
upstream bottlenecks are controlled, some of the downstream
bottlenecks in the efficiency-ranked list can be indirectly
controlled. Thus, controlling these nodes directly results in no
change in the magnetization. This gives the plateaus shown for
fixing nodes 9-10 and 12–15, for example.

The only case in which an exhaustive search is possible is for
p~2 with constraints, which is shown in Fig. 10. Note that the
polynomial-time best+1 strategy identifies the same set of nodes as
the exponential-time exhaustive search. This is not surprising,
however, since the constraints limit the available search space.
This means that the Monte Carlo also does well. The efficiency-
ranked method performs worst. The efficiency-ranked strategy is
designed to be a heuristic strategy that scales gently, however, and
is not expected to work well in such a small space when compared
with more computationally expensive methods.

B Cell Network
The B cell network was derived from the B cell interactome of

Ref. [34]. The reconstruction method used in Ref. [34] removes
edges from an initially complete network depending on pairwise
gene expression correlation. Additionally, the original B cell
network contains many protein-protein interactions (PPIs) as well
as transcription factor-gene interactions (TFGIs). TFGIs have
definite directionality: a transcription factor encoded by one gene
affects the expression level of its target gene(s). PPIs, however, do
not have obvious directionality. We first filtered these PPIs by
checking if the genes encoding these proteins interacted according
to the PhosphoPOINT/TRANSFAC network of the previous
section, and if so, kept the edge as directed. If the remaining PPIs
are ignored, the results for the B cell are similar to those of the lung
cell network. We found more interesting results when keeping the
remaining PPIs as undirected, as is discussed below.

Because of the network construction algorithm and the inclusion
of many undirected edges, the B cell network is more dense
(*0.290% complete, see Table 2) than the lung cell network. This
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higher density leads to many more cycles than the lung cell
network, and many of these cycles overlap to form one very large
cycle cluster containing *66% of nodes in the full network. All
gene expression data used for B cell attractors was taken from Ref.
[47]. We analyzed two types of normal B cells (naı̈ve and memory)
and three types of B cell cancers (diffuse large B-cell lymphoma
(DLBCL), follicular lymphoma, and EBV-immortalized lympho-
blastoma), giving six combinations in total. We present results for
only the naı̈ve/DLBCL combination below, but Tables 3 and 4
list the properties of all normal/cancer combinations. Again, all
gene expression measurements for a given cell type were averaged
together to produce a single attractor. The full B cell network is
composed of 4364 nodes. For p~1, there is one cycle cluster C

composed of 2886 nodes. This cycle cluster has 1ƒncrit(C)
ƒ1460, I(C)~4353, and 3:0ƒecrit(C)ƒ4353: Finding Z(C) was
deemed too difficult.

Fig.11 shows the results for the unconstrained p~1 case. Again,
the pure efficiency-ranked strategy gave the same results as the
mixed efficiency-ranked strategy, so only the pure strategy was
analyzed. As shown in Fig. 11, the Monte Carlo strategy is out-
performed by both the efficiency-ranked and best+1 strategies.
The synergistic effects of fixing multiple bottlenecks slowly
becomes apparent as the best+1 and efficiency-ranked curves
separate.

Fig. 12 shows the results for the unconstrained p~2 case. The
largest weakly connected subnetwork contains one cycle cluster

Figure 9. Largest weakly connected differential subnetwork for IMR-90/A549 and p = 2. Out of the 506 pictured nodes, 450 are sinks and
therefore have an impact equal to one. The top five bottlenecks are labeled with their gene names and colored orange.
doi:10.1371/journal.pone.0105842.g009
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with 351 nodes, with 1ƒncritƒ208. Although finding a set of
critical nodes is difficult, the optimal efficiency for this cycle cluster
is 62.2 for fixing 10 bottlenecks in the cycle cluster. This makes
targeting the cycle cluster worthwhile. The efficiency of this set of
10 nodes is larger than the efficiencies of the first 10 nodes from
the pure efficiency-ranked strategy, so the mc

? from the mixed
strategy drops earlier than the pure strategy. Both strategies
quickly identify a small set of nodes capable of controlling a
significant portion of the differential network, however, and the
same result is obtained for fixing more than 10 nodes. The best+1
strategy finds a smaller set of nodes that controls a similar fraction
of the cycle cluster, and fixing more than 7 nodes results in only
incremental decreases in mc

?. The Monte Carlo strategy performs
poorly, never finding a set of nodes adequate to control a
significant fraction of the nodes in the cycle cluster.

Conclusions

Signaling models for large and complex biological networks are
becoming important tools for designing new therapeutic methods
for complex diseases such as cancer. Even if our knowledge of
biological networks is incomplete, rapid progress is currently being
made using reconstruction methods that use large amounts of
publicly available omic data [12,13]. The Hopfield model we use
in our approach allows mapping of gene expression patterns of

normal and cancer cells into stored attractor states of the signaling
dynamics in directed networks. The role of each node in disrupting
the network signaling can therefore be explicitly analyzed to
identify isolated genes or sets of strongly connected genes that are
selective in their action. We have introduced the concept of size k
bottlnecks to identify such genes. This concept led to the
formulation of several heuristic strategies, such as the efficiency-
ranked and best+1 strategy to find nodes that reduce the overlap of
the cell network with a cancer attractor. Using this approach, we
have located small sets of nodes in lung and B cancer cells which,
when forced away from their initial states with local magnetic
fields (representing targeted drugs), disrupt the signaling of the
cancer cells while leaving normal cells in their original state. For
networks with few targetable nodes, exhaustive searches or Monte
Carlo searches can locate effective sets of nodes. For larger
networks, however, these strategies become too cumbersome and
our heuristic strategies represent a feasible alternative. For tree-like
networks, the pure efficiency-ranked strategy works well, whereas
the mixed efficiency-ranked strategy could be a better choice for
networks with high-impact cycle clusters.

We make two important assumptions in applying this analysis to
real biological systems. First, we assume that genes are either fully
off or fully on, with no intermediate state. Modelling the state of a
neuron as ‘‘all-or-none’’ has long been accepted as a reasonable
assumption [48], which provided the spin glass framework for the

Figure 10. Final cancer magnetizations for a constrained search on the lung cell network using p = 2. This is the only case in which a
limited exhaustive search is possible. Interestingly, the exhaustive search locates the same nodes as the best+1 strategy for fixing up to eight nodes.
The efficiency-ranked strategy performs poorly compared to the Monte Carlo strategy because the search space is small and a large portion of the
available space is sampled by the Monte Carlo search.
doi:10.1371/journal.pone.0105842.g010
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Hopfield model. While similar switch-like behavior in gene
regulatory networks has been proposed as an explanation of, for
example, segmentation in Drosophila embryos [49], assigning a
Boolean value to gene expression may be overly simplistic in many
cases. A model which uses spins with more than two projections
could prove to be more realistic and predictive. Second, we
assume that all nodes update their status with a single timescale
and with a single interaction strength. If the signaling timescale tij

for each edge in the biological network is known, simulations could
be conducted in which a signal traveling along an edge (j,i)
reaches its target after tij time steps. This would amount to a

synchronous update schedule with a ‘‘queue’’ of signals moving
between nodes. Likewise, our model gives equal weight to all edges
(aside from edges that are effectively deleted in the p~2 case),
whereas real gene regulatory networks exhibit a spectrum of
interaction strengths. This can easily be integrated with our model
by using a weighted, directed adjacency matrix. However, doing
this would surely require a change in control strategy.

Despite these issues, our model shows promise. Some of the
genes identified in Table 4 are consistent with current clinical and
cancer biology knowledge. For instance, in the lung cancer list we
found a well known tumor suppressor gene (TP53) [50] that is
frequently mutated in many cancer types including lung cancer
[51]. Mutations in PBX1 have recently been detected in non-
small-cell lung cancer and this gene is now being considered as a

target for therapy and prognosis [52]. MAP3K3 and MAP3K14
are in the MAPK/ERK pathway which is a target of many novel
therapeutic agents [53], and SRC is a well known oncogene and a
candidate target in lung cancer [54]. BCL6 (B-cell lymphoma 6) is
the most common oncogene in DLBCL, and it is known that its
expression can predict prognosis and response to drug therapy
[55–57]. BCL6 is also frequently mutated in follicular lymphoma
[58,59]. Our analysis identified BCL6 as an important drug target
for both DLBCL and follicular lymphoma using either naive or
memory B-cells as a control for both p~1 and p~2. RBL2
disregulation has been recently associated with many types of
lymphoma [60–62]. FOXM1 is a potential therapeutic target in
mature B cell tumors [63] and ATF2 has been recently found to be
highly disregulated in lymphoma [64,65]. Besides BCL6 discussed
above, the N/D list for DLBCL contains genes (MEF2A [66],
NCOA1 [67,68], TGIF1 [69–71], NFATC3 [72]) that are all
known to have a functional role in cancer, even if they have not
been associated to the specific B-cell cancer types we have
considered. Our predictions are for the immortalized cell lines we
have selected, some of which are commonly used for in-vitro
testing in many laboratories. RNAi and targeted drugs could then
be used in these cell lines against the top scoring genes in Table 4
to test the disruption of survival or proliferative capacity. If
experimentally validated, our analysis based on attractor states and
bottlenecks could be applied to patient-derived cancer cells by

Figure 11. Final cancer magnetizations for an unconstrained search on the B cell network using p = 1. The Monte Carlo strategy is
ineffective for fixing any number of nodes. The efficiency-ranked and best+1 curves slowly separate because synergistic effects accumulate faster for
best+1.
doi:10.1371/journal.pone.0105842.g011
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integrating in the model patient gene expression data to identify
patient-specific targets.

The above unconstrained searches assume that there exists
some set of ‘‘miracle drugs’’ which can turn any gene ‘‘on’’ and
‘‘off’’ at will. This limitation can be patially taken into account by
using constrained searches that limit the nodes that can be
addressed. However, even the constrained search results are
unrealistic, since most drugs directly target more than one gene.
Inhibitors, for example, could target differential nodes with
jc

i ~{1 and jn
i ~z1, which would damage only normal cells.

Additionally, drugs would not be restricted to target only
differential nodes, and certain combinations could be toxic to
both normal and cancer cells. Few cancer treatments involve the
use of a single drug, and the synergistic effects of combining
multiple drugs adds yet another level of complication to finding an
effective treatment [27]. On the other hand, the intrinsic
nonlinearity of a cellular signaling network, with its inherent
structure of attractor states, enhances control [31] so that a
properly selected set of druggable targets might be sufficient for
robust control.

Supporting Information

Table S1 Lung cell network. The column labeled ‘‘Source
EzID’’ contains the Entrez IDs of transcription factors and kinases,

and ‘‘Target EzID’’ contains the Entrez IDs of the genes targeted
by the transcription factor or kinase to its left.
(TXT)

Table S2 IMR-90/A549 attractors for lung cell network.
The column labeled ‘‘EzID’’ contains the Entrez ID of the genes.
The second and third columns are the normal and cancer
attractor, respectively.
(TXT)

Table S3 IMR-90/NCI-H358 attractors for lung cell
network. The column labeled ‘‘EzID’’ contains the Entrez ID
of the genes. The second and third columns are the normal and
cancer attractor, respectively.
(TXT)

Table S4 B cell network. The column labeled ‘‘Source EzID’’
contains the Entrez IDs of transcription factors and kinases, and
‘‘Target EzID’’ contains the Entrez IDs of the genes targeted by
the transcription factor or kinase to its left.
(TXT)

Table S5 Memory/DLBCL attractors for B cell net-
work. The column labeled ‘‘EzID’’ contains the Entrez ID of the
genes. The second and third columns are the normal and cancer
attractor, respectively.
(TXT)

Figure 12. Final cancer magnetizations for an unconstrained search on the B cell network using p = 2. The rather sudden drop in the
magnetization between controlling 5 and 10 nodes in the efficiency-ranked strategies comes from flipping a significant portion of a cycle cluster. This
is the only network examined in which the mixed efficiency-ranked strategy produces results different from the pure efficiency-ranked strategy.
doi:10.1371/journal.pone.0105842.g012
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Table S6 Memory/EBV-immortalized lymphoblastoma
attractors for B cell network. The column labeled ‘‘EzID’’
contains the Entrez ID of the genes. The second and third
columns are the normal and cancer attractor, respectively.
(TXT)

Table S7 Memory/follicular lymphoma attractors for B
cell network. The column labeled ‘‘EzID’’ contains the Entrez
ID of the genes. The second and third columns are the normal and
cancer attractor, respectively.
(TXT)

Table S8 Naı̈ve/DLBCL attractors for B cell network.
The column labeled ‘‘EzID’’ contains the Entrez ID of the genes.
The second and third columns are the normal and cancer
attractor, respectively.
(TXT)

Table S9 Naı̈ve/EBV-immortalized lymphoblastoma
attractors for B cell network. The column labeled ‘‘EzID’’

contains the Entrez ID of the genes. The second and third
columns are the normal and cancer attractor, respectively.
(TXT)

Table S10 Naı̈ve/follicular lymphoma attractors for B
cell network. The column labeled ‘‘EzID’’ contains the Entrez
ID of the genes. The second and third columns are the normal and
cancer attractor, respectively.
(TXT)
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Prediction of kinase inhibitor response using
activity profiling, in vitro screening, and elastic
net regression
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Abstract

Background: Many kinase inhibitors have been approved as cancer therapies. Recently, libraries of kinase inhibitors
have been extensively profiled, thus providing a map of the strength of action of each compound on a large number
of its targets. These profiled libraries define drug-kinase networks that can predict the effectiveness of untested drugs
and elucidate the roles of specific kinases in different cellular systems. Predictions of drug effectiveness based on a
comprehensive network model of cellular signalling are difficult, due to our partial knowledge of the complex
biological processes downstream of the targeted kinases.

Results: We have developed the Kinase Inhibitors Elastic Net (KIEN) method, which integrates information contained in
drug-kinase networks with in vitro screening. The method uses the in vitro cell response of single drugs and drug pair
combinations as a training set to build linear and nonlinear regression models. Besides predicting the effectiveness of
untested drugs, the KIEN method identifies sets of kinases that are statistically associated to drug sensitivity in a given
cell line. We compared different versions of the method, which is based on a regression technique known as elastic net.
Data from two-drug combinations led to predictive models, and we found that predictivity can be improved by
applying logarithmic transformation to the data. The method was applied to the A549 lung cancer cell line, and
we identified specific kinases known to have an important role in this type of cancer (TGFBR2, EGFR, PHKG1 and
CDK4). A pathway enrichment analysis of the set of kinases identified by the method showed that axon guidance,
activation of Rac, and semaphorin interactions pathways are associated to a selective response to therapeutic
intervention in this cell line.

Conclusions: We have proposed an integrated experimental and computational methodology, called KIEN, that
identifies the role of specific kinases in the drug response of a given cell line. The method will facilitate the design
of new kinase inhibitors and the development of therapeutic interventions with combinations of many inhibitors.

Keywords: Drug response predictions, Kinase inhibitors, Elastic net regression, High throughput screening, Drug
combination therapies

Background
The important role of kinases in cancer biology [1] has
spurred a considerable effort towards the synthesis of
libraries of fully profiled kinase inhibitors, providing a
map of the strength of each compound on a large num-
ber of its potential targets [2-4]. In particular, a recently
published dataset has profiled several hundred kinase

inhibitors using a panel of more than 300 kinases [4].
These profiled libraries define a network of interactions
between drugs and their kinase targets [5], and represent
a valuable resource for the development of new therap-
ies. In this paper, we introduce a novel computational
method that incorporates profiled libraries and in vitro
measurements to predict the response of cells to previ-
ously untested drugs. Besides making prediction about
the cellular response to drugs, the method identifies
critical kinase targets and pathways that are statistically
associated to drug sensitivity in a given cell line.
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Statistical inference and regression methods in con-
junction with gene expression or mutations have been
used to identify specific biomarkers associated with an
increased sensitivity/resistance to drugs. For instance,
the sensitivity to PARP inhibitors of Ewing’s sarcoma
cells with mutations in the EWS gene and to MEK
inhibitors in NRAS-mutant cell lines with AHR expres-
sion have been predicted using analysis of variance and
the elastic net method [6] and then experimentally
validated [7,8]. In these analyses, the statistical variable
associated to drugs was represented by the half maximal
inhibitory concentration (IC50) in different cell lines.
However, besides the IC50, there are many other types of
information that characterize chemical compounds.
These types of information can enhance the statistical
analyses and improve the accuracy of predictions. For
instance, a method to predict drugs sensitivity in cell
lines based on the integration of genomic data with
molecular physico-chemical descriptors of the drugs has
been recently proposed [9]. Another useful type of infor-
mation is the residual activity of kinases after interacting
with a compound. Kinase profiling, patient genetic pro-
files, and sensitivity of primary leukemia patient samples
to kinase inhibitors were recently used by Tyner et al.
[10] to identify functionally important kinase targets and
clarify kinase pathway dependence in cancer.
In this paper, the residual activity of kinases upon drug

interaction is used to make predictions of the cellular
response for in vitro experiments using an elastic net [6]
regression approach. This regression method reduces
the number of predictors to a minimum set, providing a
clear picture of the kinases involved in the response of
cell lines. A primary screen (single drug) and a second-
ary screen (two-drug combinations) are used as the
training set for the regression. The two-drug screening
exhibits a broader distribution in the response and pro-
vides a good level of predictability. In fact, the model
based only on single drug response did not pass the stat-
istical cross-validation test.
We are applying this Kinase Inhibitor Elastic Net

(KIEN) method to predict cell viability of a lung cancer
cell line (A549) and a normal fibroblast cell line (IMR-90)
after drug treatment. We found that the regression can be
improved through a logarithmic transformation on the
data. Using the results of the regression, we identified a
set of kinases that are strongly associated to a selective re-
sponse of A549 and not IMR-90. Then, a pathway-based
enrichment using Reactome [11] revealed ten significant
pathways using this set of kinases, including axonal guid-
ance and related semaphorin interactions as top hits.
This paper is organized as follows: Section In vitro screen

of the kinase inhibitor library contains the experimental
results of the primary and secondary in vitro screening cor-
responding to single drugs and two-drug combinations.

These experimental results and residual kinase activity are
analyzed with Pearson’s correlation in Section Analysis of
correlations. This simple correlation analysis gives a first
glance of the kinases that are statistically associated to a sig-
nificant change in the viability of cancer and normal cell
lines. In Section Elastic net regression, we introduce the
elastic net approach and we present the results of a leave-
one-out cross validation for predictions on single and pairs
of drugs. We also present in this section the results ob-
tained using the logarithmic transformation on the vari-
ables and a pathway enrichment analysis using Reactome
[11]. The Discussion of the results is in Section Discussion,
conclusions in Section Conclusions, and Materials and
Methods in Section Materials and methods.

Results
In vitro screen of the kinase inhibitor library
Our methodology begins with the high-throughput
screening of single drug and drug pair experiments. The
244 kinase inhibitors (KIs) of the EMD drug library were
screened at 1000 nM individually and the treatment
lasted for 72 hours. To quantify a selective response of a
cancer cell line with respect to a control normal cell line,
we define the selectivity S of a single drug or drug com-
bination as

S ¼ vN
vC

where vN indicates the viability of normal cells (IMR90)
after treatment, and vC the viability of cancer cells
(A549) after treatment. From the screening of the 244
KIs, the top hit was PDK1/Akt1/Flt3 Dual Pathway
Inhibitor (CAS # 331253-86-2) as ranked by selectivity
(Figure 1). For the secondary screen, we used the PDK1/
Akt1/Flt3 Dual Pathway Inhibitor as the starting point
and combined this compound with the other KIs as a
drug pair combination. The dose of PDK1/Akt1/Flt3
Dual Pathway Inhibitor was studied to ensure proper
dosing range and minimize toxicity. We used 125 nM,
which maintains the normal cell line IMR-90’s viability
>90% (Figure 2). For the other 243 KIs we used the
standard dose of 1000 nM. Several pairs in the second-
ary screen showed very high selectivity. The top hit from
the secondary screen of the library was Alsterpaullone
2-cyanoethyl (CAS # 852529-97-0) with a selectivity of
S = 6.14 for the pair (Figure 3).

Analysis of correlations
In our second step, we analyzed the Pearson’s correlation
of the primary and secondary screening with a published
dataset [4] containing target profiles for 140 kinase
inhibitors. Therefore, even though we had a library of
244 KIs in the experimental screening, we were limited
to utilizing 140 KIs for the analysis. For each inhibitor,
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the dataset provides the residual activity (0 ≤ A ≤ 1) of
291 kinases after drug treatment. This quantity is a
measure of the strength of inhibition of a drug on each
kinase.
For each kinase k, we calculate the Pearson’s correl-

ation, Ck, between the selectivity Si and the activities
Ak, i, with i ∈ {1, …,M} indicating the single drug or drug
pair in the set. For drug pairs, the activity is estimated as
a product of the residual activities of the two drugs. The
kinases are then ranked based on the p-value of their
correlation with selectivity, and we calculate the False
Discovery Rate (FDR) adjusted p value [12]. The list of
kinases mostly correlated to the selectivity from the
primary and secondary screen are listed in Table 1. We
also did calculations of the correlation between the normal
or cancer cell viability and the activities. The results
for the top kinase-viability correlations for the primary

and secondary screen are shown in the supplementary
materials (Additional file 1: Table S1).

Elastic net regression
Next, we build a regression model that predicts the
response of a cell line to a drug or drug combination
i. The response we predict is the normal and cancer cell
viability, from which the selectivity can be derived. For
this purpose, we define a regression problem in which
we use the residual activity of the kinase k under the
effect of drug i, which we indicate as Ak, i, as predictors
of the viability. The response can be written as

vi ¼ β0 þ β1A1; i þ…þ βpAp; i : ð1Þ

A fitting procedure based on a training set of measure-
ments produces the coefficients (β0, β1,…, βp). Equation

Figure 1 Primary screen results of the top ten most selective kinase inhibitors. Drugs are ranked based on the IMR-90 to A549 viability ratio.
The 3 digit codes identify the compounds: A15: PDK1/Akt1/Flt3 Dual Pathway Inhibitor (CAS 331253-86-2); E20: Cdk/Crk Inhibitor (CAS 784211-09-2);
O20: SU9516 (CAS 666837-93-0); H15: MEK1/2 Inhibitor II (CAS 212631-61-3); L13: PI 3-Kα Inhibitor VIII (CAS 372196-77-5); G10: Fascaplysin,
Synthetic (CAS 114719-57-2); D07: Cdk2 Inhibitor II (CAS 222035-13-4); C16: Cdk1/2 Inhibitor III (CAS 443798-55-8); M16: GSK3b Inhibitor XII,
TWS119 (CAS 601514-19-6); N05: Reversine (CAS 656820-32-5). The chemical structure of these compounds is given in a Additional file 2.

Figure 2 Dose response curve of PDK1/Akt1/Flt3 dual pathway inhibitor. Different doses of PDK1/Akt1/Flt3 Dual Pathway Inhibitor were
tested to measure the response of A549 to the drug. For the secondary screen we selected 125nM to ensure low toxicity on the normal cell line.
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(1) can then be used to predict the viability of a new
drug that has not been tested, but of which the profiling
information is available. Note that we are integrating
two different types of data: kinase profiling data is ob-
tained through enzymatic assays that probe directly the
interaction between drug and kinases, while the in vitro
cell response data is the result of complex signaling that
involves many pathways downstream of the affected
kinases. The coefficients βk can be seen as a measure of
the sensitivity of a given cell line due to alterations in
the activity of kinase k.
It is well known that the least square method does not

perform well in the case of linear regression with many
predictors. In our case, we would like to use a database
of drugs that have been profiled on about 300 kinases.

However, it would be desirable to select and keep in the
final model a minimal set of the kinases that provide a
simple model, useful to gain biological insight. The lasso
technique [13] is a powerful method to reduce the num-
ber of predictors by imposing a penalty on the regres-
sion coefficients. However, in the presence of a group of
kinase predictors with strong mutual correlation, the
lasso could select only one kinase predictor from the
group while missing the others. To prevent this problem,
our method uses the elastic net approach. This method
incorporates the lasso penalty as well as a ridge penalty
to keep the regression coefficients small without com-
pletely removing them [6]. The weights of the ridge and
lasso penalties in the least square procedure can be opti-
mized for best performance of the method.

Figure 3 Secondary screen results of the top ten most selective drugs (1000 nM) when paired with PDK1/Akt1/Flt3 dual pathway
inhibitor at 125 nM. Selectivity is the IMR-90 to A549 viability ratio, as defined in Section 2.1. The 3 digit codes identify the compounds: A12:
Alsterpaullone, 2-Cyanoethyl (CAS 852529-97-0); D17: Cdk2/9 Inhibitor (CAS 507487-89-0); K08: K-252a, Nocardiopsis sp. (CAS 97161-97-2); O21:
Staurosporine, Streptomyces sp. (CAS 62996-74-1); P15: WHI-P180, Hydrochloride (CAS 211555-08-7); E13: Gö 6976 (CAS 136194-77-9); C09:
Compound 56 (CAS 171745-13-4); A10: Alsterpaullone (CAS 237430-03-4); O03: AG 1478, Selective inhibitor of epidermal growth factor receptor
(EGFR) protein (CAS 175178-82-2); N05: Reversine (CAS 656820-32-5). The chemical structure of these compounds is given in a Additional file 2.

Table 1 Correlations between selectivity and kinase activity from primary and secondary screening
Kinase Selectivity corr FDR Kinase Selectivity corr FDR

Primary screening Secondary screening

PRKCZ 0.451 2.28E-08 TGFBR2 −0.501 8.29E-08

DMPK 0.435 7.75E-08 CDK4 −0.412 6.40E-05

STK39 0.430 1.15E-07 CDC42BPB −0.409 6.40E-05

EPHA8 0.420 2.33E-07 RIPK2 −0.399 7.73E-05

ADRBK2 0.399 1.01E-06 DSTYK −0.369 0.000413

PRKACG 0.396 1.27E-06 ACVRL1 −0.368 0.000413

CAMK4 0.394 1.45E-06 PAK1 −0.367 0.000413

MAP2K2 0.393 1.53E-06 MAPKAPK2 −0.364 0.000413

ADRBK1 0.392 1.62E-06 PAK7 −0.359 0.000424

PNCK 0.382 3.29E-06 CDK1 −0.357 0.000429

A negative correlation indicates that inhibition of that particular kinases is associated to a higher selectivity. The top two hits with negative correlation, TGFBR2
and CDK4 are known to have an important role in cell proliferation, invasion and metastasis in lung adenocarcinoma [21,22].
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We show in Figure 4(a) and (b) the results of a leave
one out cross validation (LOOCV) method for the
primary (a) and secondary screen (b). For each of the
140 drugs, we apply the elastic net method using the
remaining 139 drugs and then we compare the result
to the measured value. This cross validation method is
a particular case of the more general k-fold cross valid-
ation procedure in which k is equal to the size of the
training set [14]. The cross LOOCV shows that the
information contained in the primary screen is not
sufficient to define a predictive model. The fact that
some kinases in Table 1 show some significant correl-
ation with the response when considered individually
is in general not a sufficient condition for defining a
predictive, multiple regression model. On the other
hand, the secondary screen is able to reproduce the
viability of many drugs, especially the ones with the
stronger effect on both cell lines. Overall, the data
from the secondary screen presents a much broader
distribution with a tail representing a few drug combi-
nations particularly effective. The regression works better
in identifying these highly effective pairwise combinations
and the relative ranking of their strengths. Data is not
particularly informative for drugs and drug pair combi-
nations that are not effective, which concentrate in the
neighborhood of ~ 1.
Data transformations can represent a powerful strategy

to improve regression. We applied a logarithmic trans-
formation, which is consistent with the hypothesis of an
independent action on the different kinases on the total

viability. In this case we assume that the viability can be
rewritten in the form

vi ¼ eβ0 A1; i
! "β1 ⋅ A2; i

! "β2 ⋅…⋅ Ap; i
! "βp : ð2Þ

By applying a log transformation on both sides of
Eq. (2) we reduce the problem to a linear regression, to
which the elastic net strategy can be applied. We show
in Figure 5 the results of the LOOCV for the primary
and secondary screen using the logarithmic data trans-
formation. As in the linear case, we find that the
method fails the cross validation procedure if we use
data from the primary screen, while the secondary
screen with log transformed data gives better R2.
In addition to a regression model that can be used to

predict the efficacy of drugs that have not been tested,
the βi coefficients can be used to rank kinases in terms
of their relevance in the regression. Therefore, these
coefficients identify the kinases whose inhibition is asso-
ciated to a decrease in the cell viability. A ranking based
on the differential βCi −β

N
i , where the index N and C

identify the regression model of the cancer and normal
cells, gives insight on specific pathways important for a
selective response of cancer cells. Table 2 shows a list of
kinases ranked in terms of βCi −β

N
i

## ## , where the coeffi-
cients have been obtained using the logarithmic data
transformation on the secondary screen.
In order to test whether selected pathways were

significantly enriched for the identified kinase genes
in Table 2, a pathway-based enrichment analysis was

Figure 4 Leave-one-out Cross Validation of the elastic net regression model based on the primary (top) and secondary (bottom)
screens for normal and cancer cell lines. Each of the 140 point in these figures corresponds to one of the 140 drug. “Regression” refers to the
viability predicted by the regression model using all data from the other 139 drugs as training set, while “Measured” refers to the actual viability
measured for the drug or drug combination. Note that only the secondary screen leads to predictive models with significant R2 for the two
cancer cell types.
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conducted using the results from the elastic net kinase
analysis and Fisher exact tests. Ten pathways from
Reactome were identified as significant (p < 0.05) using
this kinase list, including axon guidance, activation of
Rac, and semaphorin interactions as top hits (Table 3).

Discussion
Drug-kinase profiling represents a controller-target
network [5] that when combined with in vitro testing,
can be used in regression models to predict drug
response and to identify pathways statistically associ-
ated to drug sensitivity. Network methods in biology
are often based on the analysis of large datasets from
high-throughput experiments. An example is given by
gene regulatory networks, which presents many chal-
lenges either when restricted to a homogeneous set of
data [15,16] or when it includes different classes of
data [17-20]. In our KIEN method, information from
the drug-target network and experimental query of the
biological system are integrated. The goal is not a recon-
struction of a regulatory network, but to identify a set of
kinases linked to a therapeutic response in a given cell
line. In order to establish associations, the system has to
be perturbed by the use of kinase inhibitor drugs. The
response to these single drugs or drug combinations
becomes a training set that when combined with the
kinase profiling, can lead to predictions.
The elastic net method is one of the most widely used

regularization techniques. Regularization techniques
are used in statistical and machine learning models
to achieve an optimal tradeoff between accuracy and

simplicity. Simplicity makes a model less prone to
overfitting and more likely to generalize. In our ana-
lysis, we found that the elastic net regressions based on
single drug responses were not successful, while drug
pair data provided statistically significant predictions.
A possible explanation for this finding is the following:
single drugs might be less able to overcome the robust-
ness of biological networks [5]. The phenotypic signal
is therefore blunted and not easily measured. If a
second drug is added, any compensatory capacity is
already stretched and the effects from the inhibition of
each kinase can be seen more clearly. Using data from
drug pairs, we found that noise can be better filtered out
and stronger statistical associations between kinases
and therapeutic response are revealed. Clearly, if a
different training set with higher variance in efficacy
measures were used in the primary screen, it is likely
that also single drug in vitro response would have
given a significant predictive model.
We identified several kinases that are implicated in

lung cancer that gives biological significance to our
KIEN method. In particular, TGFBR2 appears as a top
hit both in the correlation and in the elastic net
methods. This finding is consistent with recent siRNA
experiments on A549 cell lines [21], which demonstrated
that silencing of this receptor reduces cell proliferation,
invasion, and metastasis. The Cyclin-dependent kinase
4 (CDK4) appears as a second top target in the correl-
ation analysis, and is also highly significant in the KIEN
analysis. Experiments using lentiviral-mediated shRNA
to inhibit CDK4 in A549 have shown inhibited cell cycle

Figure 5 Leave-one-out Cross Validation of the elastic net regression model based on the primary (top) and secondary (bottom)
screens for normal and cancer cell lines after logarithmic transformation on the data. Each of the 140 point in these figures corresponds
to one of the 140 drugs. “Regression” refers to –log of the viability predicted by the regression model using all data from the other 139 drugs as
training set, while “Measured” refers to –log of the actual viability measured for the drug or drug combination. Note that, as in Figure 4, only the
secondary screen leads to predictive models with significant R2 for both cell types. The R2 for the Cancer cell lines is considerably better using the
log transformation.
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progression, suppressed cell proliferation, colony for-
mation, and migration [22], and there is an ongoing
clinical trial using a CDK4/6 inhibitor in lung cancer
[23]. The KIEN analysis identified EGFR, which is
known to be overexpressed in the majority of non-
small cell lung cancers [24]. Furthermore, RNAi experi-
ments targeting EGFR demonstrated cancer growth
suppression in A549 xenograft in mice [25]. The third
kinase in Table 2, PHKG1 has also been found to be
upregulated in human tumor samples, including lung

adenocarcinoma, and aberrations in its gene copy num-
ber is a feature of many human tumors [26].
The pathway-based enrichment provides a broader

view on the role of the kinases identified by our method
in Table 2. Among the top three pathways shown in
Table 3 are activation of Rac and Semaphorin interac-
tions. Rac proteins play a key role in cancer signaling
and they belong to the RAS superfamily [27]. We also
identified a set of semaphorins in our analysis that is
represented in the top significantly enriched pathways.
Semaphorins, previously known as collapsins, are a set
of proteins containing a 500-amino acid sema domain
among others (including PSI and immunoglobulin type
domains), which can be transmembranous or secreted
[28]. It is known that Sema3E cleavage promotes inva-
sive growth and metastasis in vivo [28]. These genes
also have selective targeting by Rac and Rho family
members. This generates hypotheses of possible path-
ways that could be targeted therapeutically. However,
these hypotheses need to be validated by further experi-
ments with different inhibitors for the same targets or
with alternative methods, e.g. using siRNA.

Conclusions
We have introduced an integrated experimental and
computational methodology that identifies the role of
specific kinases in the drug response of a given cell line.
The key element of our KIEN methodology is a multiple
regression procedure that uses in vitro screen data as a
training set. If a new library of kinase inhibitor com-
pounds were to be synthetized and profiled, then our
model would be able to immediately estimate the effect
of these drugs on in vitro experiments on a given cell
line. We have shown an application to a lung cancer cell

Table 2 Kinases with the highest difference in the
regression coefficients for the log transformed data of
the secondary screen
Kinase Cancer beta

coefficient
Normal beta
coefficient

Difference

TGFBR2 0.061 0.000 0.061

EGFR 0.060 0.000 0.060

PHKG1 0.051 0.014 0.037

RIPK2 0.032 −0.002 0.034

PRKG2 0.012 0.045 0.033

CDK4 0.021 −0.008 0.029

MAP3K10 0.038 0.014 0.024

MARK4 0.000 0.022 0.022

PAK1 0.025 0.004 0.021

MAP4K5 0.021 0.000 0.021

MARK2 0.006 0.026 0.021

MARK3 0.000 0.020 0.020

TBK1 0.012 0.031 0.020

ERBB2 0.021 0.001 0.019

NUAK1 −0.029 −0.010 0.019

ULK2 0.018 0.000 0.018

MYLK2 −0.024 −0.006 0.018

MAP4K4 0.004 −0.014 0.018

CDK5 0.002 −0.016 0.018

GSK3B 0.021 0.004 0.017

PAK2 0.019 0.002 0.017

CDC42BPB 0.023 0.006 0.017

DSTYK 0.006 −0.010 0.016

RPS6KA2 0.000 −0.016 0.016

FGFR1 −0.004 0.012 0.016

PAK7 0.015 0.000 0.015

PIM1 −0.015 0.000 0.015

CDK3 0.015 0.000 0.015

IRAK1 −0.002 −0.017 0.015

A larger difference is associated with a selective response of A549 upon
inhibition. Note that in addition to TGFB2R and CDK4, which were identified
with the correlation approach of Table 1, additional kinases known to have an
important role in lung cancer such as EGFR [24,25] and PHKG1 [26] are found
using the elastic net approach.

Table 3 Reactome pathways with significant
representation of kinases from the regression analysis
Path ID Path name NS NT p-val

422475 Axon guidance 9 31 0.005

428540 Activation of Rac 3 5 0.008

373755 Semaphorin interactions 4 10 0.011

376176 Signaling by Robo receptor 3 7 0.024

1266738 Developmental Biology 8 39 0.026

445144 Signal transduction by L1 4 13 0.030

373760 L1CAM interactions 4 14 0.040

193639 p75NTR signals via NF-kB 2 4 0.051

209543 p75NTR recruits signaling complexes 2 4 0.051

389359 CD28 dependent Vav1 pathway 2 4 0.051

Ns indicates the number of kinases that are found significant in the regression
analysis, while NT is the total number of kinases in the pathway. The top ten
pathways with Fisher exact test p < =0.051 are shown. These pathways are
identified from 518. Reactome pathways containing at least one of the kinases
identified in Table 2. The 9 kinases in the axon-guidance pathway are EGFR,
PAK1, ERBB2, CDK5, GSK3B, PAK2, RPS6KA2, FGFR1 and PAK7.

Tran et al. BMC Systems Biology 2014, 8:74 Page 7 of 10
http://www.biomedcentral.com/1752-0509/8/74



line, but our method can be extended to different cell
lines. The method will facilitate the design of new kinase
inhibitors and the development of therapeutic interven-
tions with combinations of many inhibitors [29]. The
procedure could be extended to three drug combina-
tions, if measurements for these larger combinations
were available. Finally, the method could be extended to
regression models that are specific of cancer cells with
the same set of mutations, or it could be directly used
with patient-derived primary cells to identify a personal-
ized treatment.

Materials and methods
Materials
The primary screening of a kinase inhibitor (KI) library
comprised of 244 KIs was purchased from EMD Chemi-
cals, and diluted with DMSO to 2 mM concentrations
for high-throughput screening purposes. The KI library
was stored at −80°C. Additionally, PDK1/Akt1/Flt3 Dual
Pathway Inhibitor (CAS # 331253-86-2) was ordered
from EMD. Only 140 out of 244 were used in the drug-
target network reconstruction because the drug profiling
information was available only for these compounds.
One kinase inhibitor known to affect the kinase targets
indirectly was excluded. We provide in Additional file 2
the chemical structure of kinase inhibitors with highest
selectivity in the primary and secondary screening.

Cell culture
Cell lines IMR-90 (normal lung fibroblast) and A549 (lung
adenocarcinoma) were cultured in RPMI 1640 (Hyclone)
supplemented with 10% Canadian characterized fetal
bovine serum (Hyclone), 1% 200 mM L-glutamine (Omega),
and 1% penicillin/streptomycin (Omega). The media
for the cells were renewed every 3 days and kept at
80-90% confluency. Cells were maintained in a humidi-
fied environment at 37°C and 5% CO2.

Kinase inhibitor experiments
IMR-90 (1500 cells/well) and A549 (750 cells/well) were
seeded on 384-well microplates (Grenier Bio-One) and
incubated for 3 hours before the addition of kinase in-
hibitor(s). The reason that IMR-90 was seeded at double
the cell density of A549 is due to the difference in cell
division. IMR-90’s doubling time is 36–48 hours whereas
A549’s is 22 hours. We wanted to make sure that the
cells have divided at least once during the 72 hr drug
treatment. Furthermore, both A549’s and IMR-90’s final
confluency at 72 hrs is 90-95% and within the range of
the ATPlite 1step assay. Additional file 1: Figures S1 and
S2 show the growth curve for both cell lines. IMR-90
and A549 cell lines were tested on the same day with
three replicates and the experiment was repeated three
times with randomized well positions to reduce biases.

ECHO 555 Liquid Handler (Labcyte) was used to dis-
pense nanoliter volumes of each KI to 384-well plates
with cells attached (wet dispense). The final volume in
the plate is 40uL and cells were incubated for 72 hours
with KI treatment.

ATP measurements
ATPlite 1Step (Perkin Elmer) was used to evaluate the
cell number and cytotoxicity. ATP measurements were
done by dispensing 20 uL of the ATPlite 1Step solution
to each well to a final volume of 60 uL. The plate was
placed on a shaker at 1100 rpm and the luminescence
activity was detected by Analyst GT Plate Reader. The
percent (%) of control is the quantity of ATPlite 1step
measurement of the treated versus the untreated wells
of each individual cell type. The ATP standard was pre-
pared with culture media to final volume of 40 uL, and
20 uL of ATPlite 1step reagent was added. Additional
file 1: Figure S3 shows the ATP standard curve. The
plate was read immediately.

Computational methods
Correlations between selectivity/viability and kinase
activity were calculated using the python scipy linregress
function, which also provide p-values. Ranking the p-values
and directly applying the Benjamini–Hochberg procedure
gave us the FDR values. The elastic net regression was
carried out using the Scikit-learn package [30] which
finds the coefficients β that minimize the function

F ¼ 1
2 M

v−Aβj jj j22 þ αρj βj jj1 þ
1
2
α 1−ρð Þjjβjj22

where v is the vector of the observed viabilities and A is
the matrix containing the residual activity of the kinases
from the profiling, and M is the total number of drugs
or drug combinations used. The parameters α and β
determine the relative weights of the lasso and ridge
penalties quantified using L1 (|| |1 ) and L2 (|| ||2) norm,
respectively. We used α = 0.15 and ρ = 0.01 in the results
of Figures 4 and 5 and in Table 2. We also tried other
values of these parameters, which did not give a signifi-
cant difference in the results.

Pathway-based enrichment
Reactome pathways were downloaded using a newer build
of the ‘biomaRt’ library (v2.12.0) in Bioconductor/R
(v2.15.0). Gene symbols from the kinase list were con-
verted to Entrez gene identifier numbers (‘entrezgene’)
and mapped against the gene ids in each Reactome
pathway. For each pathway, the set of significant genes
enriched within any given pathway was computed using
a Fisher exact test. The procedure computes the signi-
ficance (p-value) of observing significant kinases, as
deemed significant by our method, within the selected
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pathway. These pathways are identified from 518 Reac-
tome pathways. Given that our gene set consists
entirely of kinases and would be generalized towards
kinase-specific effects, the set of all kinases (~300)
were selected for background adjustment and more
sensitive enrichment of the pathways. This procedure
was repeated for each pathway to generate p-values and
pathway rankings. False discovery rate [FDR] values were
later generated to further restrict significance.

Additional files

Additional file 1: Prediction of kinase inhibitor response using
activity profiling, in-vitro screening, and elastic net regression.

Additional file 2: Chemical structure of drugs with the highest
selectivity in the primary and secondary screen.
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